• Title/Summary/Keyword: bacterial sp

Search Result 807, Processing Time 0.031 seconds

Analysis of Bacterial Community Structure in Gossi Cave by Denaturing Gradient Gel Electrophoresis (DGGE) (DGGE를 이용한 동굴 생태계 세균 군집 구조 분석)

  • 조홍범;정순오;최용근
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.213-219
    • /
    • 2004
  • The bacterial community of water stream, soil and guano in Gossi cave was examined by using PCR amplified the 16S rDNA-denaturing gradient gel electrophoyesis (DGGE). In this study, the genetic diversity and the similarity of bacterial community between open area and non - open area toy cave tour were investigated, and the seasonable variation pattern was compared each other. DGGE is attractive technique, as it sepayate same length dsDNA according to sequence variation typical 16S rDNA genes. The diversity and similarity of bacterial community in cave was analyzed by GC341f and PRUN518r primer sets foy amplification of V3 region of eubacteria 16S rDNA. The specific DGGE band profile of the cave water gives the possibility that the specific bacterial cell can be adapting to the specific cave environment and living in the cave. The DGGE band profiles of all samples with guano were compared and analyzed by image analyzer, in which mutual band profile was compared to be and the band intensity of guano was the highest. From these result, it is thought that the guano was main nutrient source and influenced on the community structure of the cave environment where is nutritionally limited. Pseudomonas sp. NZ060, Pseudomonas pseudoalcaligenes, uncultured Variovorax sp. and soli bacterium NS7 were identified to be on some sample from analysing DNA sequence of some DGGE band.

Effect of Acetic Acid Concentration and Mixed Culture of Lactic Acid Bacteria on Producing Bacterial Cellulose Using Gluconacetobacter sp. gel_SEA623-2 (Gluconacetobacter sp. gel_SEA623-2를 이용한 Bacterial Cellulose 생산에 초산농도 및 유산균 혼합배양이 미치는 영향)

  • Kim, Kyung min;Kim, Jihyeon;Yang, Kyong Wol
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.227-232
    • /
    • 2014
  • In this study, Gluconacetobacter sp. gel_SEA623-2 isolated from citrus that produces bacterial cellulose was used to examine the effect of initial concentration of acetic acid and mixed culture inoculated with Lactobacillus plantarum KCCM 80077 on productivity of bacterial cellulose. In mixed culture added with 0.5% acetic acid, the viable cell count increased from $2.4{\times}10^6CFU/ml$ to $1.1{\times}10^7CFU/ml$ after 14 days of culture, and total acidity was about 0.3% higher than single culture added with 0.5% acetic acid, which implies that additional lactic acid was produced by L. plantarum KCCM 80077. In single culture, although bacterial cellulose productivity was higher when the initial concentrations of acetic acid were 0.0% and 0.5%, than when it was 1.0%, there was no significant difference. However, in mixed culture, adding 0.5% acetic acid resulted in dry weight of $37.83{\pm}6.81g/L$ and thickness of $10.33{\pm}0.58mm$, showing a significant difference from that of single culture added with 1% acetic acid, $28.40{\pm}1.23g/L$ and $7.50{\pm}0.50mm$ (P<0.05).

Bacterial Soft Rot of Dendrobium phalaenopsis and Phalaneopsis Species by Erwinia chrysanthemi

  • Lee, Dong-Hyun;Kim, Jung-Ho;Lee, Jae-Hong;Hur, Jae-Seoun;Koh, Young-Jin
    • The Plant Pathology Journal
    • /
    • v.15 no.5
    • /
    • pp.302-307
    • /
    • 1999
  • Occurrence of soft rots was observed on Dendrobium phalaenopsis and Phalaenopsis sp. that were grown at the greenhouses in Sunchon and Kwangyang areas, Chonnam province of Korea in 1997 and 1998. Typical soft rot symptom appeared frequently on young plants of D. phalaenopsis and Phalaenopsis sp. Soft rot symptom usually appeared on old leaves of D. phalaenopsis, and extended into whole leaves, accompanying blighting of whole plants. Symptom began as a small water-soaked lesion on old leaves of Phalaenopsis sp., which enlarged rapidly on the leaves and eventually resulted in soft rots of whole plants. The causal organism isolated from the infected lesions was identified as Erwinia chrysanthemi based on its pathogenicity, physiological and biochemical characteristics, and the results of the BIOLOGTM program. The bacterial soft rot caused by e. chrysanthemi was firstly describe din D. phalaenopsis and Phalanopsis sp. in Korea.

  • PDF

Plant-growth promoting traits of bacterial strains isolated from button mushroom (Agaricus bisporus) media

  • Yeom, Young-Ho;Oh, Jong-Hoon;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.19 no.3
    • /
    • pp.134-139
    • /
    • 2021
  • A diverse group of plant-growth promoting bacteria were isolated in button mushroom (Agaricus bisporus) media to investigate the plant-growth promoting traits of compounds including indole acetic acid (IAA), ammonia, 1-aminocyclopropane-1-carboxylic acid deaminase, siderophore, and hydrogen cyanide. Twenty-one bacterial strains showing positive effects for all the test traits were selected and classified to confirm bacterial diversity in the media habitat. Plant-growth promoting traits of the isolates were also assessed. All strains produced IAA ranging from 20 ㎍/mL to 250 ㎍/mL. Most of the isolates produced more than 80% siderophore. Four strains (Pantoea sp., PSB-08, Bacillus sp., PSB-13, Pseudomonas sp., PSB-17, and Enterobacter sp., PSB-21) showed outstanding performances for all the tested traits. In a bioassay of these four strains using mung bean plant, the best growth performances (23.16 cm, 22.98 cm, 2.27 g/plant, and 1.83 g/plant for shoot length, root length, shoot dry weight, and root dry weight, respectively) were obtained from the plants co-inoculated with Bacillus sp., PSB-13. The resultant data indicate that button mushroom media have got a diverse group of bacteria with plant growth promoting abilities. Thus, the media could be a good recycling resource for using to an effective bio-fertilizer.

Indirect Bacterial Effect Enhanced Less Recovery of Neonicotinoids by Improved Activities of White-Rot Fungus Phlebia brevispora

  • Harry-Asobara, Joy L.;Kamei, Ichiro
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.809-812
    • /
    • 2019
  • Bacterial strains that improve mycelial morphology and growth of white-rot fungi in liquid medium could enhance the impact of white-rot fungi towards lesser recovery of neonicotinoids when cocultured. This was demonstrated by the recovery of clothianidin and acetamiprid from cocultures of the white-rot fungus Phlebia brevispora strains with two mycelial-growth-promoting bacteria, Enterobacter sp. TN3W-14 and Pseudomonas sp. TN3W-8. Clothianidin recovery from cocultures of white-rot fungi and bacteria was over 40% lower than that from axenic microbial cultures and mixed-bacterial cultures. About 20% less acetamiprid was equally recovered from both TMIC33929+TN3W-14 cocultures and mixed-bacterial cultures than from axenic fungal and bacterial cultures.

Characterization of Pseudomonas sp. MN5 and Purification of Manganese Oxidizing Protein (Pseudomonas sp. MN5의 특성과 망간산화단백질 정제)

  • Lee, Seung-Hui;Park, Kyeong-Ryang
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.84-90
    • /
    • 2008
  • Bacterial colonies which were able to oxidize the manganese were isolated from six soil samples in Byungchon area. Among them, one bacterial strain was selected for this study based on its high manganese oxidation activity. This selected bacterial strain was identified as Pseudomonas sp. MN5 through physiological-biochemical test and analysis of its 16s rRNA sequence. This selected bacterial strain was able to utilize fructose and maltose, but they doesn't utilizing various carbohydrates as a sole carbon source. Pseudomonas sp. MN5 showed a very sensitive to antibiotics such as kanamycin, chloramphenicol, streptomycin and tetracycline, but a high resistance up to mg/ml unit to heavy metals such as lithium, manganese and barium. Optimal manganese oxidation condition of Pseudomonas sp. MN5 was pH 7.5 and manganese oxidation activity was inhibited by proteinase K and boiling treatment. The manganese oxidizing protein produced by Pseudomonas sp. MN5 was purified by ammonium sulfate precipitation, HiTrap Q FF anion exchange chromatography and G3000sw $_{XL}$ gel filtration chromatography. By sodium dodecyl sulfate polyacrylamide gel electrophoresis, three manganese oxidizing protein with estimated molecular weights of 15 kDa, 46.7 kDa and 63.5 kDa were detected. Also, it was estimated that manganese oxidizing protein produced by Pseudomonas sp. MN5 were a kind of porin proteins through internal sequence and N-terminal sequence analysis.

Isolation of a Bacterium That Inhibits the Growth of Anabaena cylindrica

  • Kim, Chul-Ho;Leem, Mi-Hyea;Choi, Yong-Keel
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.284-289
    • /
    • 1997
  • A Gram (-), rod-shaped bacterium $2.3{\sim}2.8{\times}0.45{\mu}m$ in size which exhibited growth-inhibiting effects against a cyanobacterium (Anabaena cylindrica) was isolated from Daechung Dam Reservoir. This isolate was identified as Moraxella sp. and designated Moracella sp. CK-1. Hollow zones formed around bacterial colonies on the cyanobacterial lawn. In a mixed-culture of A. cylindrica and the isolate, each microorganism grew inverse-proportionally, and the cyanobacterial vegetative cells completely disappeared within 24 hours. On treatment with Moraxella sp. CK-1, cell walls of A. cylindrica disappeared, but sheathes remained in a more electron dense form. The unit membrane such as thylakoidal membrane was stable to bacterial lysing activity. This bacterium showed a broad action spectrum against cyanobacteria. The growth-inhibiting activity of Moracella sp. CK-1 against A. cylindrica is believed to be performed through the excretion of active substances.

  • PDF

Antioxidant Activities of Bacterial Culture Extracts Isolated from Arctic Lichens (북극 지의류로부터 분리한 미생물 배양 추출액의 항산화 활성)

  • Kim, Mi-Kyeong;Park, Hyun;Oh, Tae-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.333-338
    • /
    • 2012
  • Lichens are a symbiosis between fungi, algae and cyanobacteria. Our group recently studied the antioxidant properties of some bacterial species isolated from Arctic lichens and we confirmed that they possess high antioxidant activities. In this paper, we investigated the antioxidant capacity of 5 microorganisms newly isolated from 4 Arctic lichen species, Cladonia sp., Sterocaulon sp., Umbilicaria sp. and Cetraria sp., using various solvent extractions. We carried out 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2'-azino-bis(3-ethyl benzothiazoline-6-sulphonic acid) (ABTS) free radical scavenging activity test and ferric reducing antioxidant power (FRAP) assay. Also total phenolic and flavonoid content assays were performed. Among the bacterial culture extracts of the tested lichen-microorganisms, ethyl acetate extracts of Burkholderia sordidicola S5-B(T) had not only a high antioxidant activity (72.9%) when compared with the ascorbic acid used as the control (51.3%) in the DPPH assay, but also a high amount of phenolic content as well as flavonoid content. As a result, these lichen-microorganisms may be potentially useful sources of natural antioxidants.

Effects of Oxolinic Acid on Microbial Community under Simulated Marine Fish Farm Environment (해산어 양식환경하의 미생물군집에 대한 옥소린산의 영향)

  • Yoon Duk-Hyun;Kim Mu-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.2 s.25
    • /
    • pp.89-98
    • /
    • 2006
  • The microbial response after treatment of antibiotics was studied for investigating the resistance pattern under simulated aquaculture environment. A marine microcosm was developed for marine fish farm environment using artificial seawater and sediment. Oxolinic acid, which has been commonly used in aquaculture, was employed for the experiment. Resistance patterns and the changes of microbial community were monitored before. during and after use of oxolinic acid. Vibrionaceae was the dominant bacterial species throughout the experiment, consisting 65-75% of total bacterial number in fish farm environment. However, some gram-positive bacteria, Micrococcos sp. and Bacillus sp. strains in marine farm environment were increased in proportion to their number during the treatment. ETS activity of the bacterial communities in aquaculture environment was reduced to 42-67% during the treatment of oxolinic acid. But recovering trends of bacterial number were also detected immediately after cease of oxolinic acid treatment. Frequent treatment of oxolinic acid under the simulated fish farm environment showed bacterial resistance to increase sharply.

  • PDF

Identification of an Entomopathogenic Bacterium, Serratia sp. ANU101, and Its Hemolytic Activity

  • Kim, Yong-Gyun;Kim, Keun-Seob;Seo, Ji-Ae;Shrestha, Sony;Kim, Hosanna-H.;Nalini, Madanagopal;Yi, Young-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.314-322
    • /
    • 2009
  • Four different bacterial colonies were isolated from an old stock of an entomopathogenic nematode, Steinernema monticolum. They all showed entomopathogenicity to final instar larvae of beet armyworm, Spodoptera exigua, by hemocoelic injection. However, they varied in colony form, susceptibility to antibiotics, and postmortem change of the infected host insects. Biolog microbial identification and 16S rDNA sequence analyses indicate that these are four different species classified into different bacterial genera. Owing to high entomopathogenicity and a cadaver color of infected insect host, Serratia sp. was selected as a main symbiotic bacterial species and analyzed for its pathogenicity. Although no virulence of Serratia sp. was detected at oral administration, the bacteria gave significant synergistic pathogenicity to fifth instar S. exigua when it was treated along with a spore-forming entomopathogenic bacterium, Bacillus thuringiensis. The synergistic effect was explained by an immunosuppressive effect of Serratia sp. by its high cytotoxic effect on hemocytes of S. exigua, because Serratia sp. caused septicemia of S. exigua when the bacterial cells were injected into S. exigua hemocoel. The cytotoxic factor(s) was present in the culture medium because the sterilized culture broth possessed high potency in the cytotoxicity, which was specific to granular cells and plasmatocytes, two main immune-associated hemocytes in insects.