References
- Goulson D. 2013. An evaluation of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50: 977-987. https://doi.org/10.1111/1365-2664.12111
- Daily News. 2017. Strongest evidence yet that neonicotinoids are killing bees. Available from https://www.newscientist.com/article/2139197-strongest-evidence-yet-that-neonicotinoidsare-killing-bees/. Accessed May 4, 2018.
- Buswell JA. 1991. Fungal degradation of lignin, pp. 425-480. In Arora K, Mukerij KG, Knudsen G (eds.), Handbook of applied mycology, Marcel Dekker, New York,
- Boonchan S, Britz ML, Stanley G.A. 2000. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl. Environ. Microbiol. 66: 1007-1019. https://doi.org/10.1128/AEM.66.3.1007-1019.2000
- Harry-asobara JL, Kamei I. 2018. Bacterial strains isolated from Cedar wood improve the mycelial growth and morphology of white rot fungus Phlebia brevispora on agar and liquid medium. J. Wood Sci. 64: 444-450. https://doi.org/10.1007/s10086-018-1723-y
- Kamei I, Suhara H, Kondo R. 2005. Phylogenetical approach to isolation of white-rot fungus capable of degrading polychlorinated dibenzo-p-dioxin. Appl. Microbiol. Biotechnol. 69: 358-366. https://doi.org/10.1007/s00253-005-0052-4
- Kamei I, Sonoki S, Haraguchi K, Kondo R. 2006. Fungal bioconversion of toxic polychlorinated biphenyls by whiterot fungus P. brevispora. Appl. Microbiol. Biotechnol. 73: 932-940. https://doi.org/10.1007/s00253-006-0529-9
- Xiao P, Mori T, Kamei I, Kondo R. 2011. Metabolism of organochlorine pesticide heptachlor and its metabolite heptachlor epoxide by white rot fungi belonging to genus Phlebia. FEMS Microbiol. Lett. 314: 140-146. https://doi.org/10.1111/j.1574-6968.2010.02152.x
- Kirk TK, Yang HH, Keyser P. 1978. The chemistry and physiology of the fungal degradation of lignin. Dev. Ind. Microbiol. 19: 51-61.
- First order reactions. Chemistry Libre Texts. 2017. Available from https://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Kinetics/Reaction_Rates/First-Order_Reactions. Accessed Jan. 25, 2018.
- Clothianidin-Source Watch. https://www.sourcewatch.org/index.php/Clothianidin. Accessed Feb. 22, 2019.
- Fang XH, Qiu RL. 2002. Research of the behavior of pesticide in soil environment. Soil Environ. Sci. 11: 94-97. https://doi.org/10.3969/j.issn.1674-5906.2002.01.023
- Li L, Jiang G, Liu C, Liang H, Sun D, Li W. 2012. Clothianidin dissipation in tomato and soil, and distribution in tomato peel and flesh. Food Control 25: 265-269. https://doi.org/10.1016/j.foodcont.2011.10.046
- Lawrence IG, Sarjeet SG. 2010. The neonicotinoid insecticides, pp. 89-90. In: Insect control: biological and synthetic agents. Science, Academic Press.
- Wang G, Yue W, Liu Y, Li F, XiongM ZH. 2013a. Biodegradation of the neonicotinoid insecticide Acetamiprid by bacterium Pigmentiphaga sp. strain AAP-1 isolated from soil. Bioresour. Technol. 138: 359-368. https://doi.org/10.1016/j.biortech.2013.03.193
- Krull R, Wucherpfennig T, Esfandabadi ME, Walisko R, Melzer G, Hempel DC, et al. 2013. Characterization and control of fungal morphology for improved production performance in biotechnology. J. Biotechnol. 163: 112-123. https://doi.org/10.1016/j.jbiotec.2012.06.024
Cited by
- Microbial Technologies Employed for Biodegradation of Neonicotinoids in the Agroecosystem vol.12, 2019, https://doi.org/10.3389/fmicb.2021.759439