• Title/Summary/Keyword: bacterial populations

Search Result 291, Processing Time 0.022 seconds

Effect of Temperature and Relative Humidity on Growth of Aspergillus and Penicillium spp. and Biocontrol Activity of Pseudomonas protegens AS15 against Aflatoxigenic Aspergillus flavus in Stored Rice Grains

  • Mannaa, Mohamed;Kim, Ki Deok
    • Mycobiology
    • /
    • v.46 no.3
    • /
    • pp.287-295
    • /
    • 2018
  • In this study, we evaluated the effect of different temperatures (10, 20, 30, and $40^{\circ}C$) and relative humidities (RHs; 12, 44, 76, and 98%) on populations of predominant grain fungi (Aspergillus candidus, Aspergillus flavus, Aspergillus fumigatus, Penicillium fellutanum, and Penicillium islandicum) and the biocontrol activity of Pseudomonas protegens AS15 against aflatoxigenic A. flavus KCCM 60330 in stored rice. Populations of all the tested fungi in inoculated rice grains were significantly enhanced by both increased temperature and RH. Multiple linear regression analysis revealed that one unit increase of temperature resulted in greater effects than that of RH on fungal populations. When rice grains were treated with P. protegens AS15 prior to inoculation with A. flavus KCCM 60330, fungal populations and aflatoxin production in the inoculated grains were significantly reduced compared with the grains untreated with strain AS15 regardless of temperature and RH (except 12% RH for fungal population). In addition, bacterial populations in grains were significantly enhanced with increasing temperature and RH, regardless of bacterial treatment. Higher bacterial populations were detected in biocontrol strain-treated grains than in untreated control grains. To our knowledge, this is the first report showing consistent biocontrol activity of P. protegens against A. flavus population and aflatoxin production in stored rice grains under various environmental conditions of temperature and RH.

Temporal Changes of Fungal and Bacterial Populations in Rice under Indoor Storage Conditions

  • Oh, Ji-Yeon;Sang, Mee-Kyung;Ryoo, Mun-Il;Kim, Ki-Deok
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.74-79
    • /
    • 2008
  • This research was conducted to evaluate fungal and bacterial populations in unhulled and brown rice under indoor storage conditions, and to examine the relationship between microbial populations and environmental conditions such as temperature and relative humidity. The temperature and relative humidity of the storage room ranged from $22.6^{\circ}C\;to\;27.0^{\circ}C$ and 23.3% to 44.2%, respectively. Total fungal and bacterial populations remained relatively stable over the storage period. Predominant fungi included Aspergillus candidus, A. flavus, A. fumigatus, and Penicillium spp.; the predominant bacteria were Bacillus, Microbacterium, Sphingomonas, and Methylobacterium spp. Total fungi and bacteria were not significantly correlated with either unhulled (r=0.448, P=0.372) or brown (r=0.466, P=0.351) rice. In unhulled rice, total fungi showed positive correlations with total Aspergillus (r=0.994, P<0.001) and total Penicillium (r=0.906, P<0.05); A. flavus was positively correlated with total Aspergillus (r=0.913, P<0.05) and total fungi (r=0.868, P<0.05). In brown rice, Bacillus spp. was also positively correlated with total bacteria (r=0.998, P<0.001). Mean temperature was negatively correlated with A. candidus (r=-0.852, P<0.05) and total fungi (r=-0.961, P<0.01), and mean relative humidity was positively correlated with total Penicillium spp.(r=0.884, P<0.05) in brown rice. Hence these results could provide basic information on the fungal and bacterial populations in unhulled and brown rice stored under room conditions, and on the effect of environmental conditions on the populations of fungi and bacteria, especially Aspergillus and Penicillium spp.

A Super-Absorbent Polymer Combination Promotes Bacterial Aggressiveness Uncoupled from the Epiphytic Population

  • Lee, Bo-Young;Kim, Dal-Soo;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.283-288
    • /
    • 2008
  • Plant leaf surface is an important niche for diverse epiphytic microbes, including bacteria and fungi. Plant leaf surface plays a critical frontline defense against pathogen infections. The objective of our study was to evaluate the effectiveness of a starch-based super-absorbent polymer(SAP) combination, which enhances water potential and nutrient availability to plant leaves. We evaluated the effect of SAP on the maintenance of bacterial populations. In order to monitor bacterial populations in situ, a SAP mixture containing Pseudomonas syringae pv. tabaci that expressed recombinant green fluorescent protein(GFPuv) was spray-challenged onto whole leaves of Nicotiana benthamiana. The SAP combination treatment enhanced bacterial robustness, as indicated by disease severity and incidence. Unexpectedly, bacterial numbers were not significantly different between leaves treated with the SAP combination and those treated with water alone. Furthermore, young leaves treated with the SAP combination had more severe symptoms and a greater number of bacterial spots caused by primary and secondary infections compared to young leaves treated with the water control. In contrast, bacterial cell numbers did not statistically differ between the two groups, which indicated that measurement of viable GFP-based bacterial spots may provide a more sensitive methodology for assessing virulence of bacterial pathogens than methods that require dilution plating following maceration of bacterial-inoculated leaf tissue. Our study suggests that the SAP combination successfully increased bacterial aggressiveness, which could either be used to promote the ability of biological agents to control weedy plants or increase the robustness of saprophytic epiphytes against competition from potentially harmful microbes.

Effect of Copper and Cadmium on Natural Populations of Bacteria from Surface Microlayers (중금속이 해양의 표층세균군집에 미치는 영향에 관하여)

  • 김상종
    • Korean Journal of Microbiology
    • /
    • v.22 no.4
    • /
    • pp.243-247
    • /
    • 1984
  • The effect of the heavy metals copper and cadmium on the natural populations of surface microlayer and subsurface water was investigated. Two microbiological parameters, number of colony-forming bacteria and $^{14}C-glucose$ uptake rate, were evalated. The two natural bacterial populations showed different tolerances of the heavy metals. The ingibition of bacterial growth and activity occurred more strongly in the 1m-depth samples than in neuston populations. The results support the existence of autochthonous bacterioneuston populations in marine environment.

  • PDF

Effect of the Herbicide Bentazon on Nitrification, and on Numbers of Bacteria and Fungi in the Soil (제초제(除草劑) Bentazon이 질산화작용(窒酸化作用) 및 토양미생물(土壤微生物)의 균수(菌數)에 미치는 영향(影響))

  • Kang, Kyu-Young
    • Applied Biological Chemistry
    • /
    • v.21 no.2
    • /
    • pp.81-83
    • /
    • 1978
  • The effect of bentazon(3-isopropyl-1H-2,1,3-benzothiadiazine-(4)-3H-one-2,2-dioxide) at 50, 200ppm on nitrification of 100ppm applied $NH_4-N$, and on the numbers of nitrite-oxidizing bacteria, and on total bacterial and fungal populations were studied in a soil for six weeks. The herbicide retarded nitrification with increasing its treatment, which was coincident with the decrease of nitrite-oxidinzing bacterial populations. Bentazon treatment in a soil caused the decrease of total bacterial populations and inversely the increase of fungal populations for 2 weeks.

  • PDF

Comparative Analysis of the Difference in the Midgut Microbiota between the Laboratory Reared and the Field-caught Populations of Spodoptera litura

  • Pandey, Neeti;Rajagopal, Raman
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.423-433
    • /
    • 2019
  • Midgut microbiota is known to play a fundamental role in the biology and physiology of the agricultural pest, Spodoptera litura. This study reports the difference in the larval midgut microbiota of field-caught and laboratory-reared populations of S. litura by performing 16S rDNA amplicon pyrosequencing. Field populations for the study were collected from castor crops, whereas laboratory-reared larvae were fed on a regular chickpea based diet. In total, 23 bacterial phylotypes were observed from both laboratory-reared and field-caught caterpillars. Fisher's exact test with Storey's FDR multiple test correction demonstrated that bacterial genus, Clostridium was significantly abundant (p < 0.05) in field-caught larvae of S. litura as compared to that in the laboratory-reared larvae. Similarly, bacterial genera, such as Bradyrhizobium, Burkholderia, and Fibrisoma were identified (p < 0.05) predominantly in the laboratory-reared population. The Bray-Curtis dissimilarity matrix depicted a value of 0.986, which exhibited the maximum deviation between the midgut microbiota of the laboratory-reared and field-caught populations. No significant yeast diversity was seen in the laboratory-reared caterpillars. However, two yeast strains, namely Candida rugosa and Cyberlindnera fabianii were identified by PCR amplification and molecular cloning of the internal transcribed space region in the field-caught caterpillars. These results emphasize the differential colonization of gut residents based on environmental factors and diet.

Selection Efficiency of Resistant Tobacco Plants to Bacterial wilt Disease Using Two Haploid Methods (반수체 육종법을 이용한 잎담배 세균성마름병 저항성 개체 선발의 효율성 비교)

  • 정윤화
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.15 no.2
    • /
    • pp.137-144
    • /
    • 1993
  • The present study was conducted to compare the efficiency of individual plant selection for resistance to bacterial wilt with 30 dihaploid lines derived by anther culture and Nicotiana africana method in Fl and F2 generation from a cross between Bright Yellow 4 (BY4) and NC95. F2 dihaploid lines were selected from bacterial wilt disease resistant plants screened under the naturally infested filed conditions. The populations of FB - ADH and FB MDH derived from F2 individual plants with bacterial wilt resistance showed higher resistance to the disease than the populations of Fl - ADH and Fl - MDH, respectively, and no difference for the disease resistance appeared by the haploid deriving method within a generation.

  • PDF

Phylogenetic Analysis of Bacterial Populations in a Tomato Rhizosphere Soil Treated with Chicken Feather Protein Hydrolysate (닭우모 단백질 가수분해물을 처리한 토마토 근권토양 내 세균군집의 계통 해석)

  • Kim, Se-Jong;Han, Song-Ih;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.328-335
    • /
    • 2013
  • As a result of conducting a cultural experiment of tomato using chicken feather protein hydrolysate (CPH) which was mass produced by keratin protein degrading bacterium Chryseobacterium sp. FBF-7 (KACC 91463P), we found that the stem and the root of tomato showed significant improvement in growth. For the purpose of phylogenic interpretation, a comparison was drawn between the effect of CPH, a treated CPH and untreated, on the changes of bacterial populations by 454 pyrosequencing based on 16S rRNA gene sequences. Tomato rhizosphere soil untreated with CPH (NCPH) showed 6.54 Shannon index from 3,281 sequence reads, and the rhizosphere soil treated with CPH (TCPH) showed 6.33 Shannon index from 2,167 sequence reads, displaying that it does not affect the diversity. Bacterial populations were composed of 19 phyla in the rhizosphere soil, and the phylum Proteobacteria occupied 40% of total bacterial populations. Bradyrhizobium, Agromonas, Nitrobacter, and Afipia (BANA group) which belong to Bradyrhizobiaceae were abundant and commonly detected in both the treated and untreated soils, suggesting the dominance of bacterial group in rhizosphere soil. The results obtained showed that CPH treatment does not affect the indigenous bacterial populations present in the rhizosphere soil.

Denaturing Gradient Gel Electrophoresis Analysis of Bacterial Populations in 5-Stage Biological Nutrient Removal Process with Step Feed System for Wastewater Treatment

  • Lee, Soo-Youn;Kim, Hyeon-Guk;Park, Jong-Bok;Park, Yong-Keun
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • Changes in the bacterial populations of a 5-stage biological nutrient removal (BNR) process, with a step feed system for wastewater treatment, were monitored by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA fragments. DGGE analysis indicated seasonal community changes were observed, however, community profiles of the total bacteria of each reactor showed only minor differences in the samples obtained from the same season. The number of major bands was higher in the summer samples, and decreased during the winter period, indicating that the microbial community structure became simpler at low temperatures. Since the nitrogen and phosphate removal efficiencies were highly maintained throughout the winter operation period, the bacteria which still remaining in the winter sample can be considered important, playing a key role in the present 5-stage BNR sludge. The prominent DGGE bands were excised, and sequenced to gain insight into the identities of the predominant bacterial populations present, and most were found to not be closely related to previously characterized bacteria. These data suggest the importance of culture-independent methods for the quality control of wastewater treatment.

Studies on Manifestation of Bacterial Leaf Blight Resistant Gene I. Relationship Between the Resistance of Rice to Bacterial Leaf Blight and the Multiplication and Spread of the Xanthomonas campestris pv. oryzae (수도 흰잎마름병 저항성 유전자 발현에 관한 연구 I. 흰잎마름병균의 증식 및 이동과 저항성과의 관계)

  • 김한용;최재을
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.2
    • /
    • pp.132-136
    • /
    • 1990
  • This experiment was conducted to study the multiplication and spread of bacterial population in water exuded through the hydathode of infected leaf of Xanthomonas campestris pv. oryzae in resistant and susceptible rice cultivars to bacterial leaf blight. The results obtained are summarized as follows. The bacterial multiplication in resistant cultivars was almost constant from three days to twelve days after inoculation with population of 10$^3$-10$^4$cfu/$\textrm{cm}^2$, but the multiplication was increased as days after inoculation extended in susceptible cultivars. The speed of bacterial multiplication and the number of bacteria spread above and below the inoculated position were closely related with the resistance of rice cultivars to bacterial leaf blight. The bacterial multiplication and spread were observed throughout the all growing stages including seedling, maximum tillering and flag leaf stages. The bacterial populations in water exuded through the hydathode were dependent on the multiplication and spread, and the populations were also closely related with the resistance of rice cultivars.

  • PDF