• Title/Summary/Keyword: bacterial lysates

Search Result 17, Processing Time 0.02 seconds

Effects of Oral Intake of Kimchi-Derived Lactobacillus plantarum K8 Lysates on Skin Moisturizing

  • Kim, Hangeun;Kim, Hye Rim;Jeong, Bong jun;Lee, Seung Su;Kim, Tae-Rahk;Jeong, Ji Hye;Lee, Miyeong;Lee, Sinai;Lee, Jong Suk;Chung, Dae Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.74-80
    • /
    • 2015
  • Skin is the soft outer covering of vertebrates that provides protection from pathogenic infection, physical damage, or UV irradiation, and controls body temperature and water content. In this study, we examined the effects of oral intake of kimchi-derived Lactobacillus plantarum K8 lysates on skin moisturizing. In an in vitro study, we observed that the hyaluronic acid content increased in HaCaT cells treated with L. plantarum K8 lysates. Oral administration of L. plantarum K8 lysates effectively attenuated the horny layer formation and decreased epidermal thickening in DNCB-treated SKH-1 hairless mice skin. The damage to barrier function was reduced after 8 weeks of oral administration of L. plantarum K8 lysates as compared with that in the atopic dermatitis mice. For the test with volunteers, we manufactured experimental candy containing 2.1% L. plantarum K8 lysates, while control candy did not contain bacterial lysate. A significant increase in hydration in the experimental candy-administered group as compared with the control candy-administered group was observed on the face after 4 and 8 weeks, and on the forearm after 4 weeks. Decreases in horny layer thickness and TEWL value were observed on the face and forearm of the experimental group. Together, the in vitro cell line and in vivo mouse studies revealed that L. plantarum K8 lysates have a moisturizing effect. A clinical research study with healthy volunteers also showed an improvement in barrier repair and function when volunteers took L. plantarum K8 lysates-containing candy. Thus, our results suggest that L. plantarum K8 lysates may help to improve skin barrier function.

Production of IL-6 and IL-8 in Human Fibroblasts Stimulated with Mycoplasma Lysates and Bacterial Toxins (세균독소와 Mycoplasma 항원으로 자극시킨 사람 섬유아세포의 Interleukin-6와 Interleukin-8 생성의 변화)

  • Kim, Kwang-Hyuk;Chang, Myung-Woong
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.6
    • /
    • pp.573-582
    • /
    • 1999
  • Cytokines are hormone-like proteins which mediate and regulate inflammatory and immune responses. The purpose of this study was to investigate the effect of lipopolysaccharide (LPS), Staphylococcus enterotoxin B (SEB), and Mycoplasma lysates on regulation of IL-6 and IL-8 production by human nasal fibroblasts. Primary cultured cells were incubated with LPS ($1.0\;{\mu}g/ml$) from E.coli, SEB ($1.0\;{\mu}g/ml$) from S.aureus, or Mycoplasma lysates (M.pneumoniae, Mp; M. fermentans, Mf; M. hominis, Mh, each $1.0\;{\mu}g/ml$). The culture supernatants were collected at 2, 6, and 24 hr and assessed for IL-6 and IL-8 production by enzyme-linked immunosorbent assay. The production of IL-6 in the culture supernatant was downregulated by LPS, SEB, or Mycoplasma lysates. But IL-6 was upregulated by mixed exposure with Mp+LPS (2 hr), Mp+LPS+SEB (24 hr), Mf+LPS (24 hr), Mf+LPS+SEB (2 hr), Mh+LPS (24 hr), Mh+SEB (24 hr), or Mh+LPS+SEB (24 hr). The production of IL-8 in the culture supernatant was similar to that of IL-6 by same stimulants. But IL-8 was upregulated by mixed exposure with Mf+LPS+SEB (2 hr), Mh+LPS (24 hr), Mh+ SEB (24 hr), or Mh+LPS+SEB (24 hr). These studies show that costimulation of LPS or SEB with Mycoplasma whole cell lysates upregulates the production of IL-6 and IL-8.

  • PDF

Induction of Bone Morphogenetic Protein-2 from Gingival Epithelial Cells by Oral Bacteria

  • Kim, Young-Sook;Ji, Suk;Jung, Hong-Moon;Woo, Kyung-Mi;Choi, Young-Nim
    • International Journal of Oral Biology
    • /
    • v.32 no.3
    • /
    • pp.103-107
    • /
    • 2007
  • We hypothesized that plaque-associated bacteria may have a role in maintenance of alveolar bone. To test it, immortalized gingival epithelial HOK-16B cells were co-cultured with live or lysed eight plaque bacterial species and the expression levels of bone morphogenetic protein (BMP)-2 and -4 were examined by real time reverse transcription-polymerase chain reaction. Un-stimulated HOK-16B cells expressed both BMP-2 and -4. Co-culture with plaque bacterial lysates had significant effects on the level of BMP-2 but not on that of BMP-4. Five species including Streptococcus sanguinis, S. gordonii, Veillonella atypica, Porphyromonas gingivalis, and Treponema denticola substantially up-regulated the level of BMP-2. In contrary to the upregulatory effect of lysate, live T. denticola suppressed the expression of BMP-2. In addition, in vitro osteoblastic differentiation assay using C2C12 cells and the conditioned medium of HOK-16B cells confirmed the production of BMPs by gingival epithelial cells and the modulation of BMP expression by the lysates of S. sanguinis and T. denticola. In conclusion, we have shown that plaque bacteria can regulate the expression of BMP-2 by gingival epithelial cells, the physiologic meaning of which needs further investigation.

Interaction Proteome Analysis of Xanthomonas Hrp Proteins

  • Jang, Mi;Park, Byoung-Chul;Lee, Do-Hee;Bae, Kwang-Hee;Cho, Sa-Yeon;Park, Hyun-Seok;Lee, Baek-Rak;Park, Sung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.359-363
    • /
    • 2007
  • Because of the importance of the type III protein-secretion system in bacteria-plant interaction, its function in bacterial pathogenesis of plants has been intensively studied. To identity bacterial proteins interacting with Xanthomonas hrp gene products that are involved in pathogenicity, we performed the glutathione-bead binding analysis of Xanthomonas lysates containing GST-tagged Hrp proteins. Analysis of glutathione-bead bound proteins by 1-DE and MALDI-TOF has demonstrated that Avr proteins, RecA, and several components of the type III secretion system interact with HrpB protein. This proteomic approach could provide a powerful tool in finding interaction partners of Hrp proteins whose roles in host-pathogen interaction need further studies.

A MALDI-MS-based Glucan Hydrolase Assay Method for Whole-cell Biocatalysis

  • Ahn, Da-Hee;Park, Han-Gyu;Song, Won-Suk;Kim, Seong-Min;Jo, Sung-Hyun;Yang, Yung-Hun;Kim, Yun-Gon
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.69-77
    • /
    • 2019
  • Screening microorganisms that can produce glucan hydrolases for industrial, environmental, and biomedical applications is important. Herein, we describe a novel approach to perform glucan hydrolase screening-based on analysis of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) spectra-which involves degradation of the oligo- and polysaccharides. As a proof-of-concept study, glucan hydrolases that could break down glucans made of several glucose units were used to demonstrate the MALDI-MS-based enzyme assay. First, the enzyme activities of ${\alpha}$-amylase and cellulase on a mixture of glucan oligosaccharides were successfully discriminated, where changes of the MALDI-MS profiles directly reflected the glucan hydrolase activities. Next, we validated that this MALDI-MS-based enzyme assay could be applied to glucan polysaccharides (i.e., pullulan, lichenan, and schizophyllan). Finally, the bacterial glucan hydrolase activities were screened on 96-well plate-based platforms, using cell lysates or samples of secreted enzyme. Our results demonstrated that the MALDI-MS-based enzyme assay system would be useful for investigating bacterial glucoside hydrolases in a high-throughput manner.

Cross-reactivity and Protective Immunity of Streptococcus pneumonieae ClpP (페렴구균 ClpP의 면역 교차 반응과 방어효과)

  • 권혁영;이선숙;이순복;표석능;이동권
    • YAKHAK HOEJI
    • /
    • v.48 no.1
    • /
    • pp.47-54
    • /
    • 2004
  • ClpP is a stress-inducible protein and proteolytic subunit of the ATP-dependent Clp protease in prokaryotes and eukaryotes. Although its physiological roles in bacterial virulence were widely studied in various organsims, including Streptococcus pneumoniae, until now the immunological effect has not been investigated. Here, we have examined the cross reactivity of S. pneumoniae ClpP antibody with other organisms's cell lysate proteins. Although the protein sequence of S. pneumoniae ClpP was highly conserved among various organisms including human, the antibody rasised by S. pneumoniae ClpP was not cross-reacted with other organism's cell lysates, which were Saccharomyces cerevisiae , human lung A549 cell, Bacillus subtilis, Pseuomonas aeruginosa, E. coli, and Salmonella typhi. It was only reacted with S. pneumoniae and Lato-bacillus thermophilus. Thus we examined the immunoprotective effect of ClpP by immunizing mice with the purified ClpP. The mean survival time of mouse was significantly increased with the ClpP immunization. These results suggest that S. pneumoniae ClpP could be used as a vaccine candidate for prevention of S. pneumoniae infection.

Bacterial ${\beta}$-Lactamase Fragment Complementation Strategy Can Be Used as a Method for Identifying Interacting Protein Pairs

  • Park, Jong-Hwa;Back, Jung-Ho;Hahm, Soo-Hyun;Shim, Hye-Young;Park, Min-Ju;Ko, Sung-Il;Han, Ye-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1607-1615
    • /
    • 2007
  • We investigated the applicability of the TEM-l ${\beta}$-lactamase fragment complementation (BFC) system to develop a strategy for the screening of protein-protein interactions in bacteria. A BFC system containing a human Fas-associated death domain (hFADD) and human Fas death domain (hFasDD) was generated. The hFADD-hFasDD interaction was verified by cell survivability in ampicillin-containing medium and the colorimetric change of nitrocefin. It was also confirmed by His pull-down assay using cell lysates obtained in selection steps. A coiled-coil helix coiled-coil domain-containing protein 5 (CHCH5) was identified as an interacting protein of human uracil DNA glycosylase (hUNG) from the bacterial BFC cDNA library strategy. The interaction between hUNG and CHCH5 was further confirmed with immunoprecipitation using a mammalian expression system. CHCH5 enhanced the DNA glycosylase activity of hUNG to remove uracil from DNA duplexes containing a U/G mismatch pair. These results suggest that the bacterial BFC cDNA library strategy can be effectively used to identify interacting protein pairs.

Optimization of Streptococcus macedonicus MBF10-2 Lysate Production in Plant-based Medium by Using Response Surface Methodology

  • Andyanti, Dini;Dani, Fatin M.;Mangunwardoyo, Wibowo;Sahlan, Muhamad;Malik, Amarila
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.2
    • /
    • pp.220-233
    • /
    • 2019
  • Bacterial lysates have become a common ingredient for natural health care. Lactic acid bacteria (LAB) could serve as potential candidates for lysate production: the lactic acids produced by LAB have been utilized for their moisturizing, antimicrobial, and rejuvenating effects, while other substances provide topical benefits and health effects for the skin. Our study aimed to obtain lysate from a LAB S. macedonicus MBF 10-2 through an optimized fermentation using the Response Surface Methodology. Strain MBF10-2 was cultivated in a 2L fermenter tank in de Man Rogosa and Sharpe (MRS) medium and in plant-based peptone modified MRS, i.e. Soy-peptone and Vegitone. The duration and the medium composition (dextrose and soy peptone or proteose peptone) were adjusted to obtain an optimum production of cell lysate. Central Composite Design was employed for Design Expert 7.0.0 by adjusting 3 factors: dextrose (1%, 1.5%, 2%, 2.5%, 3%), soy or proteose peptone (0.5%, 0.75%, 1%, 1.25% and 1.5%), and duration of fermentation (8, 10, 12 14, and 16 h for MRS-Soy peptone and 15, 17, 19, 21, and 23 h for MRS Vegitone). Bacteriocin-Like Inhibitor Substance activity of lysate and pH were used as indicators. The optimum condition for lysate production using MRS Soy Peptone and Vegitone are as follows: dextrose concentration 2.5%, plant-based peptone 1.25%, while optimum fermentation duration were 11.18 h (MRS Soy Peptone) and 17 h (MRS Vegitone) with a starter concentration of 10% at $OD_{600nm}$ $0.2{\pm}0.05$. However, the standard MRS medium produced better quality lysate compared to MRS plant-based peptones.

Expression of Enzymatically-active Phospholipase Cγ2 in E.coli

  • Ozdener, Fatih;Kunapuli, Satya P.;Daniel, James L.
    • BMB Reports
    • /
    • v.35 no.5
    • /
    • pp.508-512
    • /
    • 2002
  • Phospholipase C-gamma-2 ($PLC{\gamma}2$) activation is a key signaling event for many cell functions. In order to delineate the pathways that lead to $PLC{\gamma}2$ activation, we devised a quick method for obtaining sufficient $PLC{\gamma}2$. We obtained the full-length cDNA for human $PLC{\gamma}2$ and expressed it in E. coli using the expression vector pT5T. To enhance the protein expression, tandem AGG-AGG arginine codons at the amino acid positions 1204-1205 were replaced by CGG-CGG arginine codons. The protein expression was detected in a Western blot analysis by both anti-$PLC{\gamma}2$ antibodies and the antibodies that are raised against the tripeptide epitope (Glu-Glu-Phe) tag that are genetically-engineered to its carboxyl terminal. Crude lysates that were prepared from bacteria that express $PLC{\gamma}2$ were found to catalyze the hydrolysis of phosphatidylinositol 4,5 bisphosphate. Similar to previous reports on $PLC{\gamma}2$ that is isolated from mammalian tissue, the recombinant enzyme was $Ca^{2+}$ dependent with optimal activity at 1-10 uM $Ca^{2+}$.

Purification and Properties of Chitosanase from Chitinolytic $\beta$-Proteobacterium KNU3

  • Yi, Jae-Hyoung;Jang, Hong-Ki;Lee, Sang-Jae;Lee, Keun-Eok;Choi, Shin-Geon
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.337-343
    • /
    • 2004
  • A bacterial strain concurrently producing extracellular chitosanase and chitinase was isolated from soil and identified as a member of the $\beta$-subgroup of Proteobacteria through its 16S rRNA analysis and some biochemical analyses. The newly discovered strain, named as KNU3, had 99% homology of its 16S rRNA sequence with chitinolytic $\beta$-Proteobacterium CTE108. Strain KNU3 produced 34 kDa of chitosanase in addition to two chitinases of 68 kDa and 30 kDa, respectively. The purified chitosanase protein (ChoK) showed activity toward soluble, colloidal, and glycol chitosan, but did not exhibit any activity toward colloidal chitin. The optimum pH and temperature of ChoK were 6.0 and $70^{\circ}C$, respectively. The chitosanase was stable in the pH 4.0 to 8.0 range at $70^{\circ}C$, while enzyme activity was relatively stable at below $45^{\circ}C$. MALDI-TOF MS and N-terminal amino acid sequence analyses indicated that ChoK protein is related to chitosanases from Matsuebacter sp. and Sphingobacterium multivorum. HPLC analysis of chitosan lysates revealed that glucosamine tetramers and hexamers were the major products of hydrolysis.