• 제목/요약/키워드: bacterial isolates

검색결과 855건 처리시간 0.032초

Genetic Characterization of Atypical Shigella flexneri Isolated in Korea

  • Hong, Sa-Hyun;Choi, Yeon-Hwa;Choo, Yun-Ae;Choi, Young-Woon;Choi, Seon-Young;Kim, Dong-Wook;Lee, Bok-Kwon;Park, Mi-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권10호
    • /
    • pp.1457-1462
    • /
    • 2010
  • Three types of serotypically atypical Shigella flexneri isolates were collected between 2007 and 2008 from Korean patients at the Korea National Institute of Health (NIH). These atypical isolates were characterized and compared with serologically typical S. flexneri. The first grouping of 11 atypical isolates displayed agglutination only with polyB antiserum and exhibited no reaction with any typing or grouping sera (PolyB:un). The second group of 3 isolates displayed reactions with typing sera IV, but also did not bind with any grouping sera (IV:un). The third group of 14 isolates exhibited a plural agglutination pattern, reacting with typing sera II, and two grouping sera (II:(3)4,7(8)). Amongst these atypical isolates, isolates belonging to IV:un and II:(3)4,7(8) exhibited greater antibiotic resistance, in particular to ampicillin, streptomycin, and trimethoprim-sulfamethoxazole, than typical S. flexneri strains. Furthermore, all II:(3)4,7(8) strains harbored integrons. This study suggests that these multiple antibiotic-resistant atypical S. flexneri are new subserotypes of S. flexneri that await further serological classification.

Differences in Colistin-resistant Acinetobacter baumannii Clinical Isolates Between Patients With and Without Prior Colistin Treatment

  • Park, Yu Jin;Hong, Duck Jin;Yoon, Eun-Jeong;Kim, Dokyun;Choi, Min Hyuk;Hong, Jun Sung;Lee, Hyukmin;Yong, Dongeun;Jeong, Seok Hoon
    • Annals of Laboratory Medicine
    • /
    • 제38권6호
    • /
    • pp.545-554
    • /
    • 2018
  • Background: The increasing morbidity and mortality rates associated with Acinetobacter baumannii are due to the emergence of drug resistance and the limited treatment options. We compared characteristics of colistin-resistant Acinetobacter baumannii (CR-AB) clinical isolates recovered from patients with and without prior colistin treatment. We assessed whether prior colistin treatment affects the resistance mechanism of CR-AB isolates, mortality rates, and clinical characteristics. Additionally, a proper method for identifying CR-AB was determined. Methods: We collected 36 non-duplicate CR-AB clinical isolates resistant to colistin. Antimicrobial susceptibility testing, Sanger sequencing analysis, molecular typing, lipid A structure analysis, and in vitro synergy testing were performed. Eleven colistin-susceptible AB isolates were used as controls. Results: Despite no differences in clinical characteristics between patients with and without prior colistin treatment, resistance-causing genetic mutations were more frequent in isolates from colistin-treated patients. Distinct mutations were overlooked via the Sanger sequencing method, perhaps because of a masking effect by the colistin-susceptible AB subpopulation of CR-AB isolates lacking genetic mutations. However, modified lipid A analysis revealed colistin resistance peaks, despite the population heterogeneity, and peak levels were significantly different between the groups. Conclusions: Although prior colistin use did not induce clinical or susceptibility differences, we demonstrated that identification of CR-AB by sequencing is insufficient. We propose that population heterogeneity has a masking effect, especially in colistin non-treated patients; therefore, accurate testing methods reflecting physiological alterations of the bacteria, such as phosphoethanolamine-modified lipid A identification by matrix-assisted laser desorption ionization-time of flight, should be employed.

Xanthomonas euvesicatoria Causes Bacterial Spot Disease on Pepper Plant in Korea

  • Kyeon, Min-Seong;Son, Soo-Hyeong;Noh, Young-Hee;Kim, Yong-Eon;Lee, Hyok-In;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • 제32권5호
    • /
    • pp.431-440
    • /
    • 2016
  • In 2004, bacterial spot-causing xanthomonads (BSX) were reclassified into 4 species-Xanthomonas euvesicatoria, X. vesicatoria, X. perforans, and X. gardneri. Bacterial spot disease on pepper plant in Korea is known to be caused by both X. axonopodis pv. vesicatoria and X. vesicatoria. Here, we reidentified the pathogen causing bacterial spots on pepper plant based on the new classification. Accordingly, 72 pathogenic isolates were obtained from the lesions on pepper plants at 42 different locations. All isolates were negative for pectolytic activity. Five isolates were positive for amylolytic activity. All of the Korean pepper isolates had a 32 kDa-protein unique to X. euvesicatoria and had the same band pattern of the rpoB gene as that of X. euvesicatoria and X. perforans as indicated by PCR-restriction fragment length polymorphism analysis. A phylogenetic tree of 16S rDNA sequences showed that all of the Korean pepper plant isolates fit into the same group as did all the reference strains of X. euvesicatoria and X. perforans. A phylogenetic tree of the nucleotide sequences of 3 housekeeping genes-gapA, gyrB, and lepA showed that all of the Korean pepper plant isolates fit into the same group as did all of the references strains of X. euvesicatoria. Based on the phenotypic and genotypic characteristics, we identified the pathogen as X. euvesicatoria. Neither X. vesicatoria, the known pathogen of pepper bacterial spot, nor X. perforans, the known pathogen of tomato plant, was isolated. Thus, we suggest that the pathogen causing bacterial spot disease of pepper plants in Korea is X. euvesicatoria.

Identification and Characterization of Novel Biocontrol Bacterial Strains

  • Lee, Seung Hwan;Kim, In Seon;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • 제20권3호
    • /
    • pp.182-188
    • /
    • 2014
  • Because bacterial isolates from only a few genera have been developed commercially as biopesticides, discovery and characterization of novel bacterial strains will be a key to market expansion. Our previous screen using plant bioassays identified 24 novel biocontrol isolates representing 12 different genera. In this study, we characterized the 3 isolates showing the best biocontrol activities. The isolates were Pantoea dispersa WCU35, Proteus myxofaciens WCU244, and Exiguobacterium acetylicum WCU292 based on 16S rRNA sequence analysis. The isolates showed differential production of extracellular enzymes, antimicrobial activity against various fungal or bacterial plant pathogens, and induced systemic resistance activity against tomato gray mold disease caused by Botrytis cinerea. E. acetylicum WCU292 lacked strong in vitro antimicrobial activity against plant pathogens, but induced systemic resistance against tomato gray mold disease. These results confirm that the trait of biological control is found in a wide variety of bacterial genera.

In Vitro Antagonistic Characteristics of Bacilli Isolates against Trichoderma spp. and Three Species of Mushrooms

  • Kim, Wan-Gyu;Weon, Hang-Yeon;Seok, Soon-Ja;Lee, Kang-Hyo
    • Mycobiology
    • /
    • 제36권4호
    • /
    • pp.266-269
    • /
    • 2008
  • Twenty isolates of Bacillus species obtained from livestock manure composts and cotton-waste composts were tested for their antagonistic effects in vitro against three green mold pathogens of mushrooms (Trichoderma harzianum, T. koningii, and T. viridescens). However, there exists a possibility Bacillus species may have antagonistic effects against mushrooms themselves, and thus the same 20 isolates were tested in vitro against three species of mushrooms (Flammulina velutipes, Lentinus edodes, and Pleurotus ostreatus). Of the 20 Bacillus species isolates tested, two inhibited mycelial growth of T. harzianum, seven that of T. koningii, and eight that of T. viridescens. Importantly, the bacterial isolates M27 and RM29 strongly inhibited mycelial growth of all the Trichoderma spp. isolates tested. The isolate M27 was subsequently identified as the most effective in inhibiting mycelial growth of all the Trichoderma species. Interesting results of the effect Bacillus isolates had upon the mushroom species followed. It was found that most Bacillus isolates except 5T33 at least somewhat inhibited mycelial growth of the three mushroom species or some of the mushrooms. Furhermore, the antagonistic effects of the bacterial isolates against the three species of mushrooms varied depending on the mushroom species, suggesting a role for mushroom type in the mechanism of inhibition. The bacterial isolates M27 and RM29 were identified as having the most antagonistic activity, inhibiting mycelial growth of all the Trichoderma spp. as well as mycelial growth of the three species of mushrooms. These results suggest that the bacterial isolates and their antagonistic effects on green mold pathogens should be further studied for their practical use for biological control of green mold in the growing room of the mushrooms.

Suppression of Fusarium Wilt Caused by Fusarium oxysporum f. sp. lactucae and Growth Promotion on Lettuce Using Bacterial Isolates

  • Yadav, Dil Raj;Adhikari, Mahesh;Kim, Sang Woo;Kim, Hyun Seung;Lee, Youn Su
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권9호
    • /
    • pp.1241-1255
    • /
    • 2021
  • This study was carried out to explore a non-chemical strategy for enhancing productivity by employing some antagonistic rhizobacteria. One hundred eighteen bacterial isolates were obtained from the rhizospheric zone of various crop fields of Gangwon-do, Korea, and screened for antifungal activity against Fusarium wilt (Fusarium oxysporum f. sp. lactucae) in lettuce crop under in vitro and in vivo conditions. In broth-based dual culture assay, fourteen bacterial isolates showed significant inhibition of mycelial growth of F. oxysporium f. sp. lactucae. All of the antagonistic isolates were further characterized for the antagonistic traits under in vitro conditions. The isolates were identified on the basis of biochemical characteristics and confirmed at their species level by 16S rRNA gene sequencing analysis. Arthrobacter sulfonivorans, Bacillus siamensis, Bacillus amyloliquefaciens, Pseudomonas proteolytica, four Paenibacillus peoriae strains, and Bacillus subtilis were identified from the biochemical characterization and 16S rRNA gene sequencing analysis. The isolates EN21 and EN23 showed significant decrease in disease severity on lettuce compared to infected control and other bacterial treatments under greenhouse conditions. Two bacterial isolates, EN4 and EN21, were evaluated to assess their disease reduction and growth promotion in lettuce in field conditions. The consortium of EN4 and EN21 showed significant enhancement of growth on lettuce by suppressing disease caused by F. oxysporum f. sp. lactucae respectively. This study clearly indicates that the promising isolates, EN4 (P. proteolytica) and EN21 (Bacillus siamensis), can be commercialized and used as biofertilizer and/or biopesticide for sustainable crop production.

Diagnosis of Lily Plant Fasciation Caused by Rhodococcus fascians in Jeju Island

  • Yong Ho Shin;Min Ju Choi;Hyun Su Kang;Yong Chull Jeun
    • Research in Plant Disease
    • /
    • 제29권1호
    • /
    • pp.39-44
    • /
    • 2023
  • To diagnose lily fasciation, lily bulbs showing fasciation were collected from several greenhouses in Jeju Island, South Korea. Bacteria were isolated from the lily bulbs and amplified with both primers for fasA in plasmid and for putative glycosyltransferase epsH gene in chromosome of Rhodococcus fascians. Three bacterial isolates were detected with the P450 primer set and identified as R. fascians by NCBI blast analysis. Twelve bacterial isolates were identified as R. fascians using RS02785 primer set, including the three bacterial isolates identified as the same pathogen using the P450 primer set. Pathogenicity of these bacterial strains identified as R. fascians was demonstrated. Apparent symptoms were observed on wounded lily leaves after inoculation with each bacterial suspension whereas no symptom was found on lily leaves treated with H2O. Furthermore, bacteria re-isolated from wounded sites were identified as R. fascians. Based on the results, these two sets of primers are recommended for quarantine of R. fascians.

Studies on the Pathogenic Pseudomonas Causing Bacterial Disease of Cultivated Mushroom in Korea (인공 재배버섯에 질병을 일으키는 Pseudomonas속 병원세균에 관한 연구 1. 인공 재배버섯의 부패 변성 원인세균에 대하여)

  • 김종완;김근희;강희진
    • Korean Journal Plant Pathology
    • /
    • 제10권3호
    • /
    • pp.197-210
    • /
    • 1994
  • This experiment was carried out to study the cause of degeneration and rot of cultivated mushroom. Among 597 bacterial isolates derived from the rots of Button mushroom (Agaricus bisporus), Oyster mushroom (Pleurotus ostreatus) and Oak mushroom (Lentinus edodes) collected from markets of 5 cities (Seoul, Suwon, Taegu, Pohang and Pusan) in Korea (1991~1993), 111 bacterial isolates (18.5%) were proved as pathogenic bacteria. These pathogenic bacteria causing bacterial rots of cultivated mushrooms were identified as Pseudomonas tolasii, P. agarici, and Eriwinia sp., and the main causal bacteria were P. tolaasii. P. fluorescens and Klebsiella plenticola were confirmed as saprophytic non-pathogenic bacteria. One hundred fifty nine isolates (Group No. 39) of the 486 saprophytic bacterial isolates were classified as P. fluorescens, and this species was most often found rot area of cultivated mushrooms. P. tolaasii, the causal organism of bacterial blotch, was classified into two groups; One group can be differentiated from the other by the formation of white precipitation band by white line reacting organisms of Pseudomonas Agar F media. P. tolaasii attacked the cultivated mushrooms relatively well at lower incubation temperature such as 5$^{\circ}C$, but P. agarici rarely attack at below 1$0^{\circ}C$. The temperature for the infection commercial cultivated mushrooms by P. agarici was higher than that of P. tolaasii. Optimum temperature for the infection of mushrooms by P. tolaasii and P. agarici were 2$0^{\circ}C$ and $25^{\circ}C$, respectively.

  • PDF

Suppressive Effect of Bacterial Isolates from Plant Rhizosphere against Late Blight Caused by Phytophthora citrophthora on Citrus Fruits (식물근권에서 분리한 세균을 처리한 감귤열매에서 감귤 역병 억제 효과)

  • Kang, So-Young;Jeun, Yong-Chull
    • Research in Plant Disease
    • /
    • 제16권1호
    • /
    • pp.35-40
    • /
    • 2010
  • Suppression effect of the 12 bacterial isolates from plant rhizosphere against late blight caused by Phytophthora citrophthora were investigated on citrus fruits. Among the bacterial isolates, THJ609-3, TRH423-3, BRH433-2, Lyso-chit and KRY505-3 presented disease suppression after wound inoculation with the fungal pathogen in vivo. The anti-fungal activity was evaluated by measuring the length of inhibition zone of the mycelium P. citrophthora adjacent to the effective bacterial isolates in which all of the 5 bacterial isolates showed antagonistic effects. However, there was no positive correlations between the efficacy of disease suppression and the antagonistic effect. On the other hand, Lyso-chit and KRY505-3 were identified as Bacillus cereus, BRH433-2 as B. circulans and TRH423-3 as Burkholderia gladioli, respectively, by analysis of rDNA sequence on the internal transcript spaces. It is suggested that the effective bacterial isolates may be useful for finding biological control agents against late blight especially on environment-friendly farm where the application of fungicide is limited.

Characterization of Bacteria Isolated from Pine Wood Nematodes in Korea (국내 소나무재선충에서 분리한 세균의 특성)

  • Seo, Sang-Tae;Moon, Yil-Seong
    • Research in Plant Disease
    • /
    • 제18권4호
    • /
    • pp.376-380
    • /
    • 2012
  • A survey of bacterial species associated with Korean isolates of pine wood nematode (PWN) was performed. A total of 110 bacterial isolates were obtained from the PWN isolates that were previously isolated from Pinus densiflora and P. koraiensis. Among the bacterial isolates, Cedecea neteri was most frequent (64 isolates) followed by Ewingella americana (21 isolates), Pseudomonas sp. (15 isolates), Flavobacterium sp. (8 isolates) and Rahnella aquatilis (2 isolates). Both E. americana and Pseudomonas sp. which are assumed to be closely associated with PWN were examined for their phytotoxicity to P. thunbergii seedlings. Ethyl acetate extracts of Psuedomonas sp. (Ba2 strain) cultures were found to induce wilting and mortality in the tested seedlings. The three bacterial species, Pseudomonas sp. (Ba2 strain), E. ameircana (Ba4 strain) and C. neteri (Ba10 strain) were examined in vitro for their sensitivity to 21 kinds of antibiotics. All of the strains were highly susceptible to carbenicillin, doxcycline and tetracycline.