• Title/Summary/Keyword: bacterial interaction

Search Result 185, Processing Time 0.023 seconds

Drosophila Gut Immune Pathway Suppresses Host Development-Promoting Effects of Acetic Acid Bacteria

  • Jaegeun Lee;Xinge Song;Bom Hyun;Che Ok Jeon;Seogang Hyun
    • Molecules and Cells
    • /
    • v.46 no.10
    • /
    • pp.637-653
    • /
    • 2023
  • The physiology of most organisms, including Drosophila, is heavily influenced by their interactions with certain types of commensal bacteria. Acetobacter and Lactobacillus, two of the most representative Drosophila commensal bacteria, have stimulatory effects on host larval development and growth. However, how these effects are related to host immune activity remains largely unknown. Here, we show that the Drosophila development-promoting effects of commensal bacteria are suppressed by host immune activity. Mono-association of germ-free Drosophila larvae with Acetobacter pomorum stimulated larval development, which was accelerated when host immune deficiency (IMD) pathway genes were mutated. This phenomenon was not observed in the case of mono-association with Lactobacillus plantarum. Moreover, the mutation of Toll pathway, which constitutes the other branch of the Drosophila immune pathway, did not accelerate A. pomorum-stimulated larval development. The mechanism of action of the IMD pathway-dependent effects of A. pomorum did not appear to involve previously known host mechanisms and bacterial metabolites such as gut peptidase expression, acetic acid, and thiamine, but appeared to involve larval serum proteins. These findings may shed light on the interaction between the beneficial effects of commensal bacteria and host immune activity.

Activated Phenoloxidase Interacts with A Novel Glycine-rich Protein on the Yeast Two-hybrid System

  • Lee, Sun-Woo;Lee, Hyun-Seong;Kim, Eun-Jun;Yoo, Mi-Ae;Lee, Bok-Luel
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • One of the innate immune reactions in invertebrates is the pro-phenoloxidase (pro-PO) activation system that is involved in the generation of superoxide, melanin synthesis, and the subsequent sequestration of foreign matter entering the hemocoel of the invertebrates. However, the molecular mechanism of this biological reaction is still obscure. To expand our understanding of the biological roles of the pro-PO activation system in invertebrates, we performed a yeast two-hybrid screening by using three regions of pro-PO as bait and a yeast two-hybrid cDNA library from Tenebrio molitor larvae as prey We isolated a novel partial cDNA clone that encodes a glycine-rich protein that interacted with the active phenoloxidase (termed phenoloxidase interacting protein, POIP). POIP consists of two domains: One is an N-terminal unique domain and the other is a C-terminal glycine-rich domain. The C-terminal glycine-rich domain showed sequential homology with those of insect antifungal proteins. Also, the yeast two-hybrid screen in a reverse orientation (using POIP as bait) yielded PO, suggesting that the PO-POIP interaction is specific. By using a 315 bP PCR fragment of the N-terminal unique region of POIP, we cloned the full-length cDNA of POIP from the Tenebruo cDNA library constructed by using E. coli injected larvae. The interaction analysis between PO, and a truncated fragment lacking the N-terminal unique region of POIP, indicated that the N-terminal unique region is necessary for interaction between PO and POIP. The expression level of the POIP mRNA is increased by bacterial injection into T. molitor larvae. This suggests that POIP might be engaged in the humoral defense reaction.

  • PDF

Coaggregation between Porphyromonas gingivalis and Tannerella forsythia (Porphyromonas gingivalis와 Tannerella forsythia의 응집반응)

  • Um, Heung-Sik;Lee, Seok-Woo;Park, Jae-Hong;Nauman, R.K.
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.1
    • /
    • pp.265-272
    • /
    • 2006
  • Dental plaque, a biofilm consisting of more than 500 different bacterial species, is an etiological agent of human periodontal disease, It is therefore important to characterize interactions among periodontopathic microorganisms in order to understand the microbial pathogenesis of periodontal disease. Previous data have suggested a synergistic effect of tow major periodontal pathogens Porphyromonas gingivalis and Tannerella forsythia in the periodontal lesion. In the present study, to better understand interaction between P. gingivalis and T. forsythia, the coaggregation activity between these bacteria was characterized. The coaggregation activity was observed by a direct visual assay by mixing equal amount (1 ${\times}$ $10^9$)of T. forsythia and P. gingivaJis cells. It was found that the first aggregates began to appear after 5-10 min, and that the large aggregates completely settled within 1 h. Electron and epifluorescence microscopic studies confirmed cell-cell contact between two bacteria. The heat treatment of P. gingivalis completely blocked the activity, suggesting an involvement of a heat-labile component of P. gingivalis in the interaction. On the other hand, heat treatment of T. forsythia significantly increased the coaggregation activity; the aggregates began to appear immediately. The coaggregation activity was inhibited by addition of protease, however carbohydrates did not inhibit the activity, suggesting that coaggregation is a protein-protein interaction. The results of this study suggest that coaggregation between P. gingivalis and T. forsythia is a result of cell-cell physical contact, and that coaggregation is mediated by a heat-labile component of P. gingivalis and T. forsythia component that can be activated on heat treatment.

Parasporin-4, A Novel Cancer Cell-killing Protein Produced by Bacillus thuringiensis

  • Inouye, Kuniyo;Okumura, Shiro;Mizuki, Eiichi
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.219-227
    • /
    • 2008
  • Bacillus thuringiensis was isolated as a pathogen of the sotto disease of silkmoth larvae about a hundred years ago. Since then, this bacterium has attracted attentions of not only insect pathologists but also many other scientists who are interested in its strong and specific insecticidal activity. This has led to the recent worldwide development of B. thuringiensis-based microbial insecticides and insect-resistant transgenic plants, as well as a landmark discovery of par asp orin, a cancer cell-specific cytotoxin produced by B. thuringiensis. In this review, we describe examination of interaction between inclusion proteins of B. thuringiensis and brush border membrane of insects using a surface plasmon resonance-based biosensor, identification and characterization of parasporin-4, the latest parasporin produced by the B. thuringiensis A1470 strain, and an effective method for preparing the parasporin-4 from inclusion bodies expressed in the recombinant Escherichia coli cells.

Purification of Recombinant Human Alpha-2a Interferon Without Using Monoclonal Antibodies

  • Kim, Dong Chung;Jin Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.916-920
    • /
    • 2002
  • This report describes a high-level expression of human alpha-2a interferon ($IFN{\alpha}-2a$) in Escherichia coli and its pilot scale purification by using a monoclonal antibody-independent chromatographic procedure that is based on anion-exchange, cation-exchange, hydrophobic interaction, and gel filtration. The recombinant E. coli produced much more $IFN{\alpha}-2a$ in a soluble form, when cultivated at low temperatures than at high-temperature fermentation. However, if the bacterial growth was taken into consideration, fermentation at $30^{\circ}C$ seemed optimal for the interferon production. By using our new protocol, we recovered approximately 160 mg of $IFN{\alpha}-2a$ with a specific activity of $3.59{\times}10^8$ IU/mg from 201 of the broth. The gel permeation chromatographic and SDS-PAGE indicated that the interferon preparation was purified to homogeneity and was of the correctly folded fast-migrating monomer.

Conserved Virulence Factors of Pseudomonas aeruginosa are Required for Killing Bacillus subtilis

  • Park Shin-Young;Heo Yun-Jeong;Choi Young-Seok;Deziel Eric;Cho You-Hee
    • Journal of Microbiology
    • /
    • v.43 no.5
    • /
    • pp.443-450
    • /
    • 2005
  • The multi-host pathogen, Pseudomonas aeruginosa, possesses an extraordinary versatility which makes it capable of surviving the adverse conditions provided by environmental, host, and, presumably, competing microbial factors in its natural habitats. Here, we investigated the P. aeruginosa-Bacillus subtilis interaction in laboratory conditions and found that some P. aeruginosa strains can outcompete B. subtilis in mixed planktonic cultures. This is accompanied by the loss of B. subtilis viability. The bactericidal activity of P. aeruginosa is measured on B. subtilis plate cultures. The bactericidal activity is attenuated in pqsA, mvfR, lasR, pilB, gacA, dsbA, rpoS, and phnAB mutants. These results suggest that P. aeruginosa utilizes a subset of conserved virulence pathways in order to survive the conditions provided by its bacterial neighbors.

New Aspects of Gene-for-Gene Interactions for Disease Resistance in Plant

  • Nam, Jaesung
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.83-87
    • /
    • 2001
  • Disease resistance in plants is often controlled by gene-for-gene mechanism in which avirulence (avr) gene products encoding by pathogens are specifically recognized, either directly or indirectly by plant disease resistance (R) gene products. Recent studies arising from molecular cloning of a number of R genes from various plant species that confer resistance to different pathogens and corresponding avr genes from various pathogens resulted in the accumulation of a wealth of knowledge on mode of action of gene-for-gene interaction. Specially, members of the NBS-LRR class of R genes encoding proteins containing a nucleotide binding site (NBS) and carboxyl-terminal leucine-rich repeats (LRRs) confer resistance to very different types of phytopathogens, such as bacteria, fungi, oomycetes, viruses, nematodes and aphids. This article reviewed the molecular events that occur up-stream of defense response pathway, specially, bacterial avr gene protein recognition mediated by NBS-LRR type R gene product in plant based on current research results of well studied model plants.

  • PDF

Antibacterial Activity of Magnolol and Honokiol in Combination with Antibiotics (Magnolol 및 Honokiol의 항생제와의 병용 효과)

  • Chung, Kyeong-Soo;Lee, Soo-Na;Kim, Young-Ho;Bae, Ki-Hwan
    • Korean Journal of Pharmacognosy
    • /
    • v.31 no.4
    • /
    • pp.407-411
    • /
    • 2000
  • Antibacterial activities of magnolol (MGL) and honokiol (HKL) in combination with four representative antibiotics-amoxicillin (AMPC), oxytetracyclin (OTC), gentamicin (GM) and chloramphenicol (CAP)-were evaluated against four bacterial strains. When tested by disk-plate method, five out of eight combinations such as HKL-AMPC, HKL-CAP, MGL- AMPC, MGL-OTC, and MGL-CAP showed additive to synergistic interaction against gram- negative bacterium Salmonella typhimureum. Of these, MGL-AMPC combination turned out to be antagonistic against Sarcina lutea and Bacillus thurungiensis. Against these two grain-positive bacteria, only HKL-GM combination showed additivity to synergism. All the other combinations showed no interactions. Despite these results, however, no synergism was observed in checkerboard titration assay.

  • PDF

An Animal-Industrial Review on Phytic Acid and Phytase (Phytic Acid와 Phytase에 관한 동물산업적 고찰)

  • 양시용;김창원;강창원
    • Journal of Animal Environmental Science
    • /
    • v.7 no.2
    • /
    • pp.83-102
    • /
    • 2001
  • Phytic acid (myo-inositol hexaphosphate or IP6) is the major storage form of phosphorus in cereals and legumes, representing 18 to 88% of the total phosphorus. Phytate form of phosphorus is not readily utilized by monogastric animals and this result causes pollution problem by phosporus released in areas of intensive livestock production. The interaction between phytic acid and essential dietary minerals, protein, or vitamins is considered to be one of the primary factors limiting the nutritional values of cereals and legunes in monogastric animals. Attempts have been made to hydrolyze dietary phytic acid by phytases to improve the feed quality and to decrease the amount of phosphorus excreted by animals. Phytase(myo-inositol hexakisphosphate phosphohydrolase) hydrolyzes phytic acid to myo-inositol and phosphoric acid. Two types of phytases are known: 3-phytase (EC 3.1.3.8) and 6-phytase (EC 3.1.3.26), indicating the intial attack to the susceptable phosphoester bond. Because of its great industrial importance, there is ongoing interest in isolating new bacterial strains producing novel and efficient phytases.

  • PDF

Mechanism on the development of periapical lesion - Effect of whole-body diseases on the development of periradicular lesions in rats

  • Nakamura, Hiroshi
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.591-591
    • /
    • 2003
  • Apical periodontitis is inflammation of the periodontium caused by infection of the pulp canal system. Moreover, a dental periradicular lesion occurs as a periradicular tissue reaction to bacterial infection and consists of periradicular inflammation with alveolar bone destruction and root resorption, a consequence of the interaction between oral flora and the existing host defenses. Many investigations dealing with the pathogenesis and history of periradicular lesions have described histologically, immunologically, biochemically the development of the periradicular lesion;but none of these studies have shown any correlation between this lesion and several factors, the whole body disease in the worldwide.(omitted)

  • PDF