• Title/Summary/Keyword: bacterial growth

Search Result 1,999, Processing Time 0.034 seconds

Antagonistic Effect of Chitinolytic Bacteria on Soilborne Plant Pathogens (토양전염성 식물병원균에 대한 Chitin 분해세균들의 길항효과)

  • 박서기;이효연;김기청
    • Korean Journal Plant Pathology
    • /
    • v.11 no.1
    • /
    • pp.47-52
    • /
    • 1995
  • One hundred and thirty bacterial isolates with high chitinolytic activity on chitin agar media were isolated and identified. Most of the isolates were Aeromonas hydrophila (110 isolates), and the others were Serratia marcescens (11 isolates), Aeromonas caviae (3 isolates), Chromobacterium violaceum strain C-61 (2 isolates), Chromobacterium violaceum strain C-72 (1 isolate) and unknown species (3 isolates). Among them, C. violaceum strain C-61 had highest chitinolytic activity and fungal growth inhibition on PDA. This bacterium also inhibited the growth of Rhizoctonia solani, Sclerotinia scelrotiorum, Phytophthora capsici and Pythium ultimum, but it didn't inhibit the growth of Fusarium oxysprum and Fusarium solani. C. violaceum strain C-61 suppressed damping-off of eggplant caused by R. solani. Populations of the chitinolytic bacteria such as Aeromonas hydrophila, Serratia marcescens, Aeromonas caviae, Chromobacterium violaceum strain C-61 and Chromobacterium violaceum strain C-72 introduced into R. solani-infested soil were continuously decreased until 20 days after treatment, but their populations except A. caviae were not changed significantly and maintained over 5$\times$104 CFU per g of soil thereafter.

  • PDF

Identification and Optimal Characteristics of Burkholderia sp. SKK381 Degrading Benzene (Benzene 분해 Burkholderia sp. SKK381 분리 및 최적 특성)

  • 강동일;김철경;고창웅;진환준;김장규;김남기
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.589-593
    • /
    • 2000
  • Several bacterial strains growing on benzene minimal medium were isolated from soil by enrichment culture, Burkholderia sp. SKK381 was identified and selected. In order to determine the ability of Burkholderia sp. SKK381 to degrade benzene. Changes in substrate concentration, cell growth, and pH were monitored from start-up in bath culture. At 30$^{\circ}C$, 1000 ppm of benzene was degraded 100% within 28hours. Cell growth conditions were best at an initial pH of 7.0 and a benzene concentration of 1000 ppm at 30$^{\circ}C$.

  • PDF

NMMP1, a Matrix Metalloprotease in Nicotiana benthamiana Has a Role in Protection against Bacterial Infection

  • Kang, So-Ra;Oh, Sang-Keun;Kim, Jong-Joo;Choi, Do-Il;Baek, Kwang-Hyun
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.402-408
    • /
    • 2010
  • Plant matrix metalloproteases (MMPs) are a family of apoplastic metalloproteases closely related to human matrilysins. Up-regulation of Nicotiana benthamiana matrix metalloprotease 1 (NMMP1) expression by treatment with pathogens, ethephon and aging indicates that the gene is related to plant defense and the aging process through ethylene signaling. NMMP1 expression was higher than in normal growth leaves following infection with an incompatible pathogen Pseudomonas syringae pv. tomato T1 or a compatible pathogen P. syringae pv. tabaci and in aged leaves. Transient overexpression of NMMP1 in N. benthamiana leaves lowered the growth of P. syringae pv. tabaci. However, NMMP1-silenced leaves showed increased growth of P. syringae pv. tabaci. These data strongly suggest that NMMP1 in N. benthamiana is a defense related gene, which is positively regulated by ethylene.

Isolation and characterization of bacteriophage infecting Lactobacillus plantarum KCCM 12116

  • Oh, Jiyoung;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.348-355
    • /
    • 2021
  • Bacteriophages (phages) are known determinants of kimchi microbial ecology. Lactobacillus plantarum is related to kimchi over-acidification during the late stages of kimchi fermentation. A phage infecting Lac. plantarum was isolated from kimchi and characterized. The phage population for kimchi in a market was 2.3 log particles/mL, which corresponded to 32% of the bacterial population on a log scale. The isolated phage was designated as ΦLP12116. ΦLP12116 which belonged to the Siphoviridae family and has a very narrow host range, infecting only Lac. plantarum. The phage was stable at a lactic acid concentration of 1.0% and pH 4.0 at 4℃, indicating that it could survive in kimchi. In the kimchi extract broth treated by the phage, the growth of Lac. plantarum KCCM 12116 was inhibited by 2.2 log CFU/mL compared to the growth in non-phage-treated broth. Therefore, this study suggests that the growth of Lac. plantarum, which is known as an acid-producing strain during late fermentation in kimchi, may be controlled using the phage.

The Effect of Polyphenols Isolated from Cynanchi wilfordii Radix with Anti-inflammatory, Antioxidant, and Anti-bacterial Activity

  • Jeong, Sunyoung;Lee, Sunwoo;Choi, Woo Jin;Sohn, Uy Dong;Kim, Wonyong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.151-158
    • /
    • 2015
  • Recently, Cynanchi wilfordii Radix has gained wide use in Asian countries as a functional food effective for relieving fatigue, osteoporosis, and constipation, particularly in menopausal disorders. However, its anti-inflammatory and anti-microbial activities have not been explored in detail to date. The anti-inflammatory, antioxidant, and anti-bacterial properties of the Cynanchi wilfordii Radix extracts obtained with water, methanol, ethanol, and acetone were compared. All 4 polyphenol-containing extracts exhibited anti-inflammatory and antioxidant effects. The ethanol extract was found to elicit the most potent reduction of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), and cytokine (IL-$1{\beta}$, IL-6, IL-10, and TNF-${\alpha}$) levels, as well as inhibit the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a concentration-dependent manner. The evaluation of antioxidant activity also revealed the ethanol extract to have the highest free radical scavenging activity, measured as $85.3{\pm}0.4%$, which is equivalent to 99.9% of the activity of ${\alpha}$ -tocopherol. In the assessment of anti-bacterial activity, only ethanol extract was found to inhibit the growth of the Bacillus species Bacillus cereus and Bacillus anthracis. These results show that polyphenols of Cynanchi wilfordii Radix have anti-inflammatory, antioxidant, and anti-bacterial properties that can be exploited and further improved for use as a supplementary functional food, in cosmetics, and for pharmaceutical purposes.

Corelation between the Treatment Result and Causative Bacteria in Amputation of Diabetic Foot (당뇨발 절단에 있어 원인 감염균과 치료 결과와의 관계)

  • Lee, Myoung Jin;Lee, Kyu Yeol;Kim, Sung Soo;Kim, Chul Hong;Wang, Lih;Kim, Hyeon Jun;Kim, Ki Woong
    • Journal of Korean Foot and Ankle Society
    • /
    • v.17 no.3
    • /
    • pp.209-214
    • /
    • 2013
  • Purpose: To evaluate correlation between the clinical results and causative bacteria in diabetic foot patients with lower extremity amputation. Materials and Methods: One hundred twenty nine patients(131 feet) of diabetic foot amputations were followed for more than one year. Wound cultures were done by deep tissue or bone debris at first visit to our clinics. Retrospective analysis was performed using chart review and interview with the patients. Depending on the culture result, level of amputation, reinfection, duration of treatment, death rate, patient satisfaction and admission dates were evaluated. Results: Microorganisms were confirmed in 114 cases. In the other 17 cases, there were no cultured microorganisms. In bacterial growth group, Methicillin-sensitive Staphylococcus aureus was the most common pathogen and accounted for 34 cases. As other common pathogens, there were Methicillin-resistant Staphylococcus aureus(24 cases) and mixed infection(14 cases). Mortality is no difference in each infected group. Mixed bacterial infected patients have higher reinfection, longer hospital day and duration of treatment, but there is no difference in patients satisfaction and pain at last follow up. Conclusion: The most common pathogen in diabetic foot patients with lower extremity amputation was Methicillin-sensitive Staphylococcus aureus, and mixed bacterial infected patients have higher reinfection rate, longer admission date and duration of treatment than other bacterial infected patients.

Heme Derived from Corynebacterium glutamicum: A Potential Iron Additive for Swine and an Electron Carrier Additive for Lactic Acid Bacterial Culture

  • Choi, Su-In;Park, Jihoon;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.500-506
    • /
    • 2017
  • To investigate the potential applications of bacterial heme, aminolevulinic acid synthase (HemA) was expressed in a Corynebacterium glutamicum HA strain that had been adaptively evolved against oxidative stress. The red pigment from the constructed strain was extracted and it exhibited the typical heme absorbance at 408 nm from the spectrum. To investigate the potential of this strain as an iron additive for swine, a prototype feed additive was manufactured in pilot scale by culturing the strain in a 5 ton fermenter followed by spray-drying the biomass with flour as an excipient (biomass: flour = 1:10 (w/w)). The 10% prototype additive along with regular feed was supplied to a pig, resulting in a 1.1 kg greater increase in weight gain with no diarrhea in 3 weeks as compared with that in a control pig that was fed an additive containing only flour. To verify if C. glutamicum-synthesized heme is a potential electron carrier, lactic acid bacteria were cultured under aerobic conditions with the extracted heme. The biomasses of the aerobically grown Lactococcus lactis, Lactobacillus rhamosus, and Lactobacillus casei were 97%, 15%, and 4% greater, respectively, than those under fermentative growth conditions. As a potential preservative, cultures of the four strains of lactic acid bacteria were stored at $4^{\circ}C$ with the extracted heme and living lactic acid bacterial cells were counted. There were more L. lactis and L. plantarum live cells when stored with heme, whereas L. rhamosus and L. casei showed no significant differences in live-cell numbers. The potential uses of the heme from C. glutamicum are further discussed.

Anti-bacterial effects of enzymatically-isolated sialic acid from glycomacropeptide in a Helicobacter pylori-infected murine model

  • Noh, Hye-Ji;Koh, Hong Bum;Kim, Hee-Kyoung;Cho, Hyang Hyun;Lee, Jeongmin
    • Nutrition Research and Practice
    • /
    • v.11 no.1
    • /
    • pp.11-16
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Helicobacter pylori (H. pylori) colonization of the stomach mucosa and duodenum is the major cause of acute and chronic gastroduodenal pathology in humans. Efforts to find effective anti-bacterial strategies against H. pylori for the non-antibiotic control of H. pylori infection are urgently required. In this study, we used whey to prepare glycomacropeptide (GMP), from which sialic acid (G-SA) was enzymatically isolated. We investigated the anti-bacterial effects of G-SA against H. pylori in vitro and in an H. pylori-infected murine model. MATERIALS/METHODS: The anti-bacterial activity of G-SA was measured in vitro using the macrodilution method, and interleukin-8 (IL-8) production was measured in H. pylori and AGS cell co-cultures by ELISA. For in vivo study, G-SA 5 g/kg body weight (bw)/day and H. pylori were administered to mice three times over one week. After one week, G-SA 5 g/kg bw/day alone was administered every day for one week. Tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), IL-$1{\beta}$, IL-6, and IL-10 levels were measured by ELISA to determine the anti-inflammatory effects of G-SA. In addition, real-time PCR was performed to measure the genetic expression of cytotoxin-associated gene A (cagA). RESULTS: G-SA inhibited the growth of H. pylori and suppressed IL-8 production in H. pylori and in AGS cell co-cultures in vitro. In the in vivo assay, administration of G-SA reduced levels of IL-$1{\beta}$ and IL-6 pro-inflammatory cytokines whereas IL-10 level increased. Also, G-SA suppressed the expression of cagA in the stomach of H. pylori-infected mice. CONCLUSION: G-SA possesses anti-H. pylori activity as well as an anti-H. pylori-induced gastric inflammatory effect in an experimental H. pylori-infected murine model. G-SA has potential as an alternative to antibiotics for the prevention of H. pylori infection and H. pylori-induced gastric disease prevention.

Understanding Comprehensive Transcriptional Response of Salmonella enterica spp. in Contact with Cabbage and Napa Cabbage

  • Lee, Hojun;Kim, Seul I;Park, Sojung;Nam, Eunwoo;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1896-1907
    • /
    • 2018
  • Salmonellosis is commonly associated with meat and poultry products, but an increasing number of Salmonella outbreaks have been attributed to contaminated vegetables and fruits. Enteric pathogens including Salmonella enterica spp. can colonize diverse produce and persist for a long time. Considering that fresh vegetables and fruits are usually consumed raw without heat treatments, Salmonella contamination may subsequently lead to serious human infections. In order to understand the underlying mechanism of Salmonella adaptation to produce, we investigated the transcriptomics of Salmonella in contact with green vegetables, namely cabbage and napa cabbage. Interestingly, Salmonella pathogenicity island (SPI)-1 genes, which are required for Salmonella invasion into host cells, were up-regulated upon contact with vegetables, suggesting that SPI-1 may be implicated in Salmonella colonization of plant tissues as well as animal tissues. Furthermore, Salmonella transcriptomic profiling revealed several genetic loci that showed significant changes in their expression in response to vegetables and were associated with bacterial adaptation to unfavorable niches, including STM14_0818 and STM14_0817 (speF/potE), STM14_0880 (nadA), STM14_1894 to STM14_1892 (fdnGHI), STM14_2006 (ogt), STM14_2269, and STM14_2513 to STM14_2523 (cbi operon). Here, we show that nadA was required for bacterial growth under nutrient-restricted conditions, while the other genes were required for bacterial invasion into host cells. The transcriptomes of Salmonella in contact with cabbage and napa cabbage provided insights into the comprehensive bacterial transcriptional response to produce and also suggested diverse virulence determinants relevant to Salmonella survival and adaptation.

Identification and Antibiotic Susceptibility Test of Bacteria from In Vitro Cultures of Pinellia ternata and Tea Plant (반하 및 차나무의 기내배양시 발생하는 세균의 동정 및 항생제 감수성 검정)

  • Kim, Haeng-Hoon;Cho, Gyu-Taek;Yoon, Mun-Sup;Yoon, Ju-Won;Cho, Eun-Gi
    • Journal of Plant Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.189-194
    • /
    • 2003
  • Contamination of bacterial infection is one of serious problems in in vitro culture system of root crops. From the contaminated tubes over 140 of petiole cultures of Pinellia ternata, a medicinal plant, 4 genera 8species 48 strains of bacteria, including Aeromonas and Pseudomonas, were isolated and identified and another 8 strains were not fully identified. Most of them were motile Gram positive bacteria as in common in early stage of in vitro cultures. Six strains of bacteria, 5 of Gram negative, including Enterobacter, and 1 of Gram positive, were identified from the embryonic axes cultures of tea plant. From the susceptibility test to pre-screened 5 antibiotics, all of the bacteria except for 2 species of Pseudomonas were susceptible to cefotaxime 60∼100mg/L. While 60mg/L erythromycin only was effective to Pseudomonas. Combination of erythromycin 20mg/L and cefotaxime 60mg/L totally suppressed the growth of all bacterial strains tested. Susceptibility test of bacteria from tea embryonic axes cultures showed similar results. Combination of erythromycin 35mg/L and cefotaxime 60mg/L was effective to 15 bacterial strains and partially effective to 1 unidentified.