• 제목/요약/키워드: bacterial growth

검색결과 1,982건 처리시간 0.024초

콩 근권의 핵심 세균 군집 (Bacterial core community in soybean rhizosphere)

  • 이영미;안재형;최유미;원항연;윤정훈;송재경
    • 미생물학회지
    • /
    • 제51권4호
    • /
    • pp.347-354
    • /
    • 2015
  • 콩은 우리나라와 극동아시아가 원산지로 알려져 있으나 국산 콩의 근권 세균 군집에 대한 연구는 미흡하다. 따라서 본 연구에서는 국산 재배콩을 대상으로 차세대 염기서열 분석 방법인 파이로시퀀싱 방법을 사용하여 콩 근권 세균 군집 구조를 해석하고 생육단계별 군집의 변화 및 콩 근권의 핵심 세균 군집을 구명하고자 하였다. 세균 군집 분석 결과, 근권 세균의 군집은 근권과 비근권간에 뚜렷한 차이를 보였으며, 총 21개의 문으로 구성되었다. Proteobacteria가 가장 우점(36.6-42.5%)하였고, Acidobacteria (8.6-9.4%), Bacteroidetes (6.1-10.9%), Actinobacteria (6.4-9.8%), Firmicutes (5.7-6.3%) 등의 순으로 상대풍부도가 감소하였다. 모든 생육단계에 걸쳐 콩 근권의 핵심 세균 군집에는 Proteobacteria에 속한 OTU들이 가장 많이 분포하였으며, 이들 중 Bradyrhizobium에 속한 OTU의 상대 풍부도가 가장 높았다. 본 연구결과는 콩 근권의 핵심 세균 군집은 주로 생육 촉진 기능과 유기물 순환에 관련된 OTU로 구성되어 있다는 것을 보여주었다.

Antimicrobial Properties of Turmeric (Curcuma longa L.) Rhizome-Derived ar-Turmerone and Curcumin

  • Lee, Hoi-Seon
    • Food Science and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.559-563
    • /
    • 2006
  • The growth responses of six bacterial strains exposed to materials extracted from turmeric (Curcuma longa) rhizomes were examined using impregnated paper disk agar diffusion. Methanol extracts of turmeric rhizomes exhibited strong inhibitory activity against Clostridium perfringens and weak inhibitory activity toward Escherichia coli at 5 mg/disk. However, in tests conducted with Bifidobacterium adolescentis, B. bifidum, B. longum, and Lactobacillus casei, the methanol extract showed no inhibitory response. The biologically active constituent isolated from the turmeric rhizomes extracts was characterized as ar-turmerone using various spectroscopic analyses including EI-MS and NMR. The responses varied according to the dosage, chemicals, and bacterial strain tested. At 2 and 1 mg/disk, ar-turmerone strongly inhibited the growth of C. perfringens and moderately inhibited the growth of E. coli without any adverse effects on the growth of four lactic acid-bacteria. Of the commercially available compounds originating from turmeric rhizomes, curcumin exhibited strong and moderate growth inhibition against C. perfringens at 2 and 1 mg/disk, respectively, and weak growth inhibition against E. coli at 1 mg/disk. However, little or no activity was observed for borneol, 1,8-cineole, and sabinene against all six bacteria strains tested. The observed inhibitory activity of the turmeric rhizome-derived curcumin and ar-turmerone against C. perfringens and E. coli demonstrate one of the important pharmacological activities of turmeric rhizomes.

Effect of Non-indigenous Bacterial Introductions on Rhizosphere Microbial Community

  • Nogrado, Kathyleen;Ha, Gwang-Su;Yang, Hee-Jong;Lee, Ji-Hoon
    • 한국환경농학회지
    • /
    • 제40권3호
    • /
    • pp.194-202
    • /
    • 2021
  • BACKGROUND: Towards achievement of sustainable agriculture, using microbial inoculants may present promising alternatives without adverse environmental effects; however, there are challenging issues that should be addressed in terms of effectiveness and ecology. Viability and stability of the bacterial inoculants would be one of the major issues in effectiveness of microbial pesticide uses, and the changes within the indigenous microbial communities by the inoculants would be an important factor influencing soil ecology. Here we investigated the stability of the introduced bacterial strains in the soils planted with barley and its effect on the diversity shifts of the rhizosphere soil bacteria. METHODS AND RESULTS: Two different types of bacterial strains of Bacillus thuringiensis and Shewanella oneidensis MR-1 were inoculated to the soils planted with barley. To monitor the stability of the inoculated bacterial strains, genes specific to the strains (XRE and mtrA) were quantified by qPCR. In addition, bacterial community analyses were performed using v3-v4 regions of 16S rRNA gene sequences from the barley rhizosphere soils, which were analyzed using Illumina MiSeq system and Mothur. Alpha- and beta-diversity analyses indicated that the inoculated rhizosphere soils were grouped apart from the uninoculated soil, and plant growth also may have affected the soil bacterial diversity. CONCLUSION: Regardless of the survival of the introduced non-native microbes, non-indigenous bacteria may influence the soil microbial community and diversity.

Effects of Cu (II)-exchanged Montmorillonite on Growth Performance, Intestinal Microflora, Bacterial Enzyme Activities and Morphology of Broilers

  • Xu, Z.R.;Ma, Y.L.;Hu, C.H.;Xia, M.S.;Guo, T.;Jin, H.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권11호
    • /
    • pp.1673-1679
    • /
    • 2003
  • Two hundred forty 1-d-old Arbor Acres broiler chicks were used to investigate the effects of Cu (II)-exchanged montmorillonite (CEM) or montmorillonite on the growth performance, intestinal microflora, bacterial enzyme activities and morphology of broilers. The chicks were assigned randomly into three groups with 80 chicks per treatment. The three dietary treatments were basal diet only (control group), basal diet +1 g $kg^{-1}$ montmorillonite, and basal diet +1 g $kg^{-1}$ CEM. The results showed that the addition of CEM to the diet increased significantly the body weight and feed efficiency, but a similarly significant increase was not found in broilers fed the diet containing montmorillonite. Supplementing the CEM in the diet of broilers also decreased the numbers of Clostridium perfringens and Escherichia coli in the small intestine and cecum. The addition of either CEM or montmorillonite to the diet depressed the activities of $\beta$-glucosidase and $\beta$-glucuronidase in the small intestinal and cecal contents. Data of villus height and crypt depth for duodenum, jejunum and ileum indicated that dietary addition of CEM or montmorillonite improved the small intestinal mucosal morphology.

장내세균의 시간차 혼합배양이 보여주는 균수측정의 비교 (Colony Count with Mixed Culture of Enteric Bacteria by in vitro Quantitative Method)

  • 황선철;전보성
    • 미생물학회지
    • /
    • 제11권4호
    • /
    • pp.175-180
    • /
    • 1973
  • This study was attempted to see more clear relationships among the enterobacteria, especially between the intestinal normal flora and pathogenic bacteria. It has been known that some intestinal normal flora produce the bactrial metabolites that are harmful to other enteric bacteria. One of the metabolites is known as colicin, the protein fraction, which possesses certain degree of inhibitory effect against other bacterial growth fraction, whih possesses certain degree of inhibitory effect against other bacterial growth. As a preliminary study for a colicin purification, the antagonistic effect of E, coli to groups of Salmonella and Shigella has been studied by means of in vitro quantitative culture method. 1. E.coli showed definite inhibitory effects aganist both Salmonella and Shigella groups in the mixture of two organisms. 2. The inhibitory effects of E.coli in the E.coli-Salmonella and the E.coli-Shigella mixture occurred from 4 hours incubation following the inoculation. 3. Even the complete inhibition of pathogenic enteric bacterial growth was noticed in the E.coli-Salmonella mixture at overnight incubation. 4. Among the diluted mixtures, 1:100, 1:1,000, and 1:10,000, survival rate of pathogenic enteric bacteria in the mixtures with E.coli showed least affected at the 1:1,000 dilution. 5. It was found that the antagonistic effect aganist groups of Salmonella-shigella was depending upon the groups of the genera.

  • PDF

Inhibitory Effect of Corn Silk Extract on Growth of Food-Borne Bacterial Pathogens

  • An, Eun-Sook;Kang, Sun-Hee;Chung, Hee-Jong
    • Food Science and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.138-142
    • /
    • 2006
  • Various levels of antibacterial activity have been identified for water and ethanol extracts of corn silk, particularly against Salmonella typhimurium KCTC 2515. In general, the water extract was more effective than the ethanol extract. The minimum inhibitory concentration (MIC) for the water extract was 7.5 mg/disc for S. typhimurium KCTC 2515 and B. cereus KCTC 1092, as well as for the ethanol extract against S. typhimurium KCTC 2515 and S. typhimurium KCTC 1925. However, the MICs for the water extract were lower than those for the ethanol extract against all bacteria tested, except S. typhimurium KCTC 1925 and B. cereus KCTC 1014. The growth of the tested organisms in the synthesized broth medium was inhibited with the addition of 5-fold levels of MIC. Using sterilized milk as the model food system, we found that the lag phase for these microorganisms was extended up to 3 days at $20^{\circ}C$, but was not affected at $4^{\circ}C$. These results indicate that bacterial growth was strongly inhibited by corn silk extract at $20^{\circ}C$.

미생물의 색소에 관한 연구. 제1보 (STudies on the Microbial Pigment(I))

  • Ahn, Tae-Seok;Choi, Yong-Keel;Hong, Soon-Woo
    • 미생물학회지
    • /
    • 제15권4호
    • /
    • pp.159-169
    • /
    • 1977
  • The bacteria of red colonies isolated from soil were identified as Serratia marcescens. The best solvent for pigment extraction was n-buthanol and the pigment was identified as prodigiosene. The extracted pigment was stable on temperature and light but not on acidity. The redpigment color changed into red in alkaline solution. The maximum absorbancy of pigment was 466 nm in alkaline condition and 540 nm in acid condition. And the pigment formed single spot on the TLC(starch). By the result of infra red spectrum, the red pigment has the same absorption pattern comparing with, the prodigisin produced by S. marcescens strain Nima. It was confirmed that the pigment was secondary metabolite and that the maximal peak of production appeared at 30 hrs after the inoculation, when the bacterial growth was in statinary state. Referring to the effect of temperature, the pigment was not formed at $36^{\circ}C$ and the optimal temperature for both of bactrial growth and pigmentation was $30^{\circ}C$. The optimal range of pH for pigmentation was 5.0 and under the condition the bacterial growth was not affected at all. Examining the effects of light, the bacterial pigment ation was more increased in darkness than in visible light.

  • PDF

액비화 과정 중 인 이용 우수미생물 분리 및 특성 (Isolation and Characterization of Phosphorus Accumulating Microorganisms under Liquid Fertilization of Swine Slurry)

  • 임정수;조성백;황옥화;양승학
    • 한국축산시설환경학회지
    • /
    • 제20권2호
    • /
    • pp.77-84
    • /
    • 2014
  • This study was conducted to investigate the bacterial capability to accumulate phosphorus during liquid composting process of pig slurry. Storage liquid compost and pig slurry were analyzed by using MALDI-TOF technique, which showed the colonies of Acinetobacter towneri and Bacillus licheniformis. In addition, bacterial colonies were isolated under high phosphoric acid conditions using X-phosphate MOPS medium with the addition of 2 mM $K_2HPO_4$. Microbial growth was observed in high and low phosphoric conditions due to the growth of bacterial diversities in the liquid fertilizer and slurry. The colonies isolated in the high phosphoric acid medium were uncultured bacterium clone and Acinetobacter sp. were identified by analysis of 16S rRNA gene sequences. Uncultured bacterium showed higher growth rate and excellent phosphorus ability then Acinetobacter sp.. In addition to Paenibacillus sp. AEY-1 isolated from pig slurry performed excellent phosphorus utilizing capability.

The Effect of Rotating Magnetic Field on Enterotoxin Genes Expression in Staphylococcus Aureus Strains

  • Fijalkowski, Karol;Peitler, Dorota;Zywicka, Anna;Rakoczy, Rafal
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.141-147
    • /
    • 2016
  • Staphylococcus aureus cultures exposed to rotating magnetic field (RMF) were studied in order to analyse the possible induced changes in staphylococcal enterotoxin genes (se) expression. Liquid cultures of S. aureus strains carrying different se were exposed to the RMF of magnetic frequency 50 Hz and magnetic induction 34 mT for 10 h at $37^{\circ}C$. Three time points of bacterial growth cycle were considered for RNA extractions. Gene expression analyses were evaluated using real-time quantitative PCR method. The present study confirmed, that the RMF can stimulate the growth rate of S. aureus cultures in comparison to the unexposed controls, while the stimulation is not strain dependent. The studies have also shown, that the RMF, depending on the exposure time but regardless the bacterial strain, can influence on the expression of various se. In general, except for sea, as a result of bacterial exposure to the RMF through subsequent growth phases, the expression of se decreased, reaching the values below results recorded for unexposed controls. In the case of sea expression remained at a lower level as compared to the control, regardless the time of exposition.

Implications of Fullerene-60 upon in-vitro LDPE Biodegradation

  • Sah, Aditi;Kapri, Anil;Zaidi, M.G.H.;Negi, Harshita;Goel, Reeta
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권5호
    • /
    • pp.908-916
    • /
    • 2010
  • Fullerene-60 nanoparticles were used for studying their effect on the low-density polyethylene (LDPE) biodegradation efficiency of two potential polymer-degrading consortia comprising three bacterial strains each. At a concentration of 0.01% (w/v) in minimal broth lacking dextrose, fullerene did not have any negative influence upon the consortia growth. However, fullerene was found to be detrimental for bacterial growth at higher concentrations (viz., 0.25%, 0.5%, and 1%). Although addition of 0.01% fullerene into the biodegradation assays containing 5mg/ml LDPE subsided growth curves significantly, subsequent analysis of the degraded products revealed an enhanced biodegradation. Fourier transform infrared spectroscopy (FT-IR) revealed breakage and formation of chemical bonds along with the introduction of ${\nu}C$-O frequencies into the hydrocarbon backbone of LDPE. Moreover, simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) revealed a higher number of decomposition steps along with a 1,000-fold decrease in the heat of reactions (${\Delta}H$) in fullerene-assisted biodegraded LDPE, suggesting the probable formation of multiple macromolecular byproducts. This is the first report whereby fullerene-60, which is otherwise considered toxic, has helped to accelerate the polymer biodegradation process of bacterial consortia.