DOI QR코드

DOI QR Code

Isolation and Characterization of Phosphorus Accumulating Microorganisms under Liquid Fertilization of Swine Slurry

액비화 과정 중 인 이용 우수미생물 분리 및 특성

  • Lim, Joung-Soo (Animal Environment Division, National Institute of Animal Science, RDA) ;
  • Cho, Sung-Back (Animal Environment Division, National Institute of Animal Science, RDA) ;
  • Hwang, Ok-Hwa (Animal Environment Division, National Institute of Animal Science, RDA) ;
  • Yang, Seung-Hak (Animal Environment Division, National Institute of Animal Science, RDA)
  • 임정수 (농촌진흥청 국립축산과학원 축산환경과) ;
  • 조성백 (농촌진흥청 국립축산과학원 축산환경과) ;
  • 황옥화 (농촌진흥청 국립축산과학원 축산환경과) ;
  • 양승학 (농촌진흥청 국립축산과학원 축산환경과)
  • Received : 2014.05.10
  • Accepted : 2014.06.04
  • Published : 2014.06.30

Abstract

This study was conducted to investigate the bacterial capability to accumulate phosphorus during liquid composting process of pig slurry. Storage liquid compost and pig slurry were analyzed by using MALDI-TOF technique, which showed the colonies of Acinetobacter towneri and Bacillus licheniformis. In addition, bacterial colonies were isolated under high phosphoric acid conditions using X-phosphate MOPS medium with the addition of 2 mM $K_2HPO_4$. Microbial growth was observed in high and low phosphoric conditions due to the growth of bacterial diversities in the liquid fertilizer and slurry. The colonies isolated in the high phosphoric acid medium were uncultured bacterium clone and Acinetobacter sp. were identified by analysis of 16S rRNA gene sequences. Uncultured bacterium showed higher growth rate and excellent phosphorus ability then Acinetobacter sp.. In addition to Paenibacillus sp. AEY-1 isolated from pig slurry performed excellent phosphorus utilizing capability.

Keywords

References

  1. Anhalt, J.P., Fenselau, C., 1975. Identification of bacteria using mass spectrometry. Anal. Chem. 47, 219-225. https://doi.org/10.1021/ac60352a007
  2. Ash, C., Farrow, J.A.E., Wallbank, S., Collins, M.D., 1991. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunit-ribosomal RNA sequences. Lett. Appl. microbiol. 13, 202-206.
  3. Barbuddhe, S.B., Maier, T., Schwarz, G., Kostrzewa, M., Hof, H., Domann, E., Chakraborty, T., Hain, T., 2008. Rapid identification and typing of Listeria species by matrixassisted laser desorption ionization time of flight mass spectrometry. Appl. Environ. Microbiol. 74, 5402-5407. https://doi.org/10.1128/AEM.02689-07
  4. Barnard, J.L., 1974. Cut P and N without Chemicals-Part 1 and 2. Wat. Was. Eng. 11, 33-41.
  5. Bernardo, K., Pakulat, N., Macht, M., Krut, O., Seifert, H., Fleer, S., Hunger, F., Kronke, M., 2002. Identification and discrimination of Staphylococcus aureus strains using matrixassisted laser desorption/ionization-time of flight mass spectrometry. Proteomics. 2, 747-753. https://doi.org/10.1002/1615-9861(200206)2:6<747::AID-PROT747>3.0.CO;2-V
  6. Bitton, G., 1994. Wastewater Microbiology. John Wiley & Sons, Inc., Publication; USA. 3, 63-65.
  7. Carroll, K.C., Weinstein, M.P., 2007. Manual and automated systems for detection and identification of microorganisms. In: Manual of clinical microbiology. 9th ed., Murray, P. R., Baron, E. J., Jorgensen, J. H., Landry, M.L., Pfaller, M.A. (ed). Washington D.C., American Society for Microbiology, 192-217.
  8. Cloete, T.E., Steyn, P.L., 1988. The role of Acinetobacter as a phosphorus removing agent in an activated sludge. Water Res. 22, 971-976. https://doi.org/10.1016/0043-1354(88)90143-1
  9. Dischinger, J., Josten, M., Szekat, C., Sahl, H., Bierbaum, G., 2009. Production of the novel two-peptide lantibiotic lichenicidin by Bacillus licheniformis DSM 13. PLoS One 4, 1-11. https://doi.org/10.1371/journal.pone.0005361
  10. Du, Z., Yang, R., Guo, Z., Song, Y., Wang, J., 2002. Identification of Staphylococcus aureus and determination of its methicillin resistance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 74, 5487-5491. https://doi.org/10.1021/ac020109k
  11. Edwards-Jones, V., Claydon, M.A., Evason, D.J., Walker, J., Fox, A.J., Gordon, D.B., 2000. Rapid discrimination between methicillin sensitive methicillin sensitive and methicillinresistant Staphylococcus aureus by intact cell mass spectrometry. J. Med. Microbiol. 49, 295-300. https://doi.org/10.1099/0022-1317-49-3-295
  12. Grangemard, I., Wallach, J., Maget-Dana, R., Peypoux, F., 2001. Lichenysin: A more efficient cation chelator than surfactin. Appl. Biochem. Biotech. 90, 199-210. https://doi.org/10.1385/ABAB:90:3:199
  13. Grosse-Herrenthey, A., Maier, T., Gessler, F., Schaumann, R., Bohnel, H., Kostrzewa, M., Kruger, M., 2008. Challenging the problem of clostridial identification with matrix-assisted laser desorption and ionization-time-of-flight mass spectrometry(MALDI-TOF MS). Anaerobe. 14, 242-249. https://doi.org/10.1016/j.anaerobe.2008.06.002
  14. Hsieh, S.Y., Tseng, C.L., Lee, Y.S., Kuo, A.J., Sun, C.F., Lin, Y.H., Chen, J.K., 2008. High efficient classification and identification of human pathogenic bacteria by MALDI-TOF MS. Mol. Cell. Proteomics. 27, 448-456.
  15. Jung, S.S., Choi, J.I., Joo, W.H., Suh, H.H., Na, A.S., Cho, Y.K., Moon, J.Y., Ha, K.C., Paik, D.H., Kang, D.O., 2009. Characterization and purification of the bacteriocin produced by Bacillus licheniformis isolated from soybean sauce. J. Life Sci. 19, 994-1002. https://doi.org/10.5352/JLS.2009.19.7.994
  16. Juni, E., 1972. Interspecies transformation of Acinetobacter: genetic evidence for a ubiquitous genus. J. Bacteriol. 47, 837-841.
  17. Kornberg, A., 1995. Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J. Bacteriol. 177, 491-496. https://doi.org/10.1128/jb.177.3.491-496.1995
  18. Krishnamurthy, T., Ross, P.L., 1996. Rapid identification of bacteria by direct matrix-assisted laser desorption/ionization mass spectrometric analysis of whole cells. Rapid Commun. Mass Spectrom. 10, 1992-1996. https://doi.org/10.1002/(SICI)1097-0231(199612)10:15<1992::AID-RCM789>3.0.CO;2-V
  19. Kuroda, A., Takiguchi, N., Kato, J., Ohtake, H., 2005. Development of Technologies to Save Phosphorus Resources in Response to Phosphate Crisis. J. Environ. Biotech. 4, 87. https://doi.org/10.1007/s11157-005-2240-1
  20. Loubinoux, J., Mihaila-Amrouche, L., Fleche, A.L., Pigne, E., Huchon, G., Grimont, P.A.D., Bouvet, A., 2003. Bacteremia caused by Acinetobacter ursingii. J. Clin. Microbiol. 41, 1337-133. https://doi.org/10.1128/JCM.41.3.1337-1338.2003
  21. Loter, L.H., Murphy, M., 1985. The identification of heterotrophic bacteria in an activated sludge plant with particular reference to polyphosphate accumulation. Water SA 11, 179-184.
  22. Mino, T., Van Loosdrecht, M.C.M., Heijnen, J.J., 1998. Microbiology and Biochemistry of the Enhanced Biological Phosphate Removal Process. Water Res. 32, 3193-3207. https://doi.org/10.1016/S0043-1354(98)00129-8
  23. Misbah, S., Hassan, H., Yusof, M.Y., Hanifah, Y.A., Abubakar, S., 2005. Genomic species identification of Acinetobacter of clinical isolates by 16S rDNA sequencing. Singapore Med J. 46, 461.
  24. Morohoshi, T., Maruo, T., Shirai, Y., Kato, J., Ikeda, T., Takiguchi, N., Ohtake, H., Kuroda, A., 2002. Accumulation of inorganic polyphosphate in phoU mutants of Escherichia coli and Synechocystis sp. strain PCC6803. Appl. Environ. Microbiol. 68, 4107-4110. https://doi.org/10.1128/AEM.68.8.4107-4110.2002
  25. Parisi, D., Magliulo, M., Nanni, P., Casale, M., Forina, M., Roda, A. 2008. Analysis and classification of bacteria by matrix-assisted laser desorption/ionization time-offlight mass spectrometry and a chemometric approach. Anal. Bioanal. Chem. 391, 2127-2134. https://doi.org/10.1007/s00216-008-2161-2
  26. Rodriguez, H., Fraga, R., 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv. 17, 319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
  27. Ryu, H.S., Shon, M.Y., Cho, S.J., Park, S.K., Lee, S.W., 2007. Characterization of antibacterial substance-producing Bacillus subtilis isolated from traditional Doenjang. J. Kor. Soc. Appl. Biol. Chem. 50, 87-94.
  28. Sedlak, R.I., 1991. Phosphorus and nitrogen removal from municipal wastewater: Principles and Practice, 2nd ed., New York, USA., Lewis publishers.
  29. Szabados, F., Woloszyn, J., Richter, C., Kaase, M., Gatermannm, S., 2010. Identification of molecularly defined Staphylococcus aureus strains using matrix- assisted laser desorption/ionization time of flight mass spectrometry and the Biotyper 2.0 database. J. Med. Microbiol. 59, 787- 790. https://doi.org/10.1099/jmm.0.016733-0
  30. Tagg, J.R., Dajani, A.S., Wannamaker, L.W., 1976. Bacteriocins of Gram-positive bacteria. Bacteriol. Rev. 40, 722-756.
  31. Walker, J., Fox, A.J., Edwards-Jones, V., Gordon, D.B., 2002. Intact cell mass spectrometry(ICMS) used to type methicillin resistant Staphylococcus aureus: media effects and inter-laboratory reproducibility. J. Microbiol. Meth. 48, 117-126. https://doi.org/10.1016/S0167-7012(01)00316-5
  32. Yakimov, M.M., Timmis, K.N., Wray, V., Fredrickson, H.H., 1995. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl. Environ. Microbiol. 61, 1706-1713.
  33. Yang, E.J., Chang, H.C., 2007. Characterization of bacteriocin-like substances produced by Bacillus subtilis MJP1. Kor. J. Microbiol. Biotechn. 35, 339-346.