• Title/Summary/Keyword: bacterial disease

Search Result 1,534, Processing Time 0.03 seconds

Suppression of Bacterial Wilt with Fuorescent Pseudomonads, TS3-7 strain (Fluorescent siderophore 생산균주, TS3-7에 의한 풋마름병 발병 억제)

  • Kim, Ji-Tae;Cho, Hong-Bum;Kim, Shin-Duk
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.296-300
    • /
    • 2005
  • Among the root colonizing and plant growth promoting bacteria isolated from the bacterial wilt suppressive soil, five strains were detected to produce siderophores by CAS agar assay. The most effective isolate, TS3-7 strain induced significant suppression of bacterial wilt disease in tomato and pepper plants. Seed treatment followed by soil drench application with this strain resulted in over 80% reduction of bacterial wilt disease compared with the control. Significant disease suppression by TS3-7 strain was related to the production of siderophore. Besides iron competition, induction of resistance of the host plant with siderophore was suggested to be another mode of action that suppress bacterial wilt, based on the lack of direct antibiosis against pathogen in vitro. According to Bergey's Manual of Systemic Bacteriology and 16S rDNA sequence data, TS3-7 stain was identified as Pseudomonas sp. TS3-7.

Draft Genome Sequences of a Unique t324-ST541-V Methicillin-Resistant Staphylococcus aureus Strain from a Pig

  • Moon, Dong Chan;Kim, Byung-Yong;Nam, Hyang-Mi;Jang, Geum-Chan;Jung, Suk-Chan;Lee, Hee-Soo;Park, Yong-Ho;Lim, Suk-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.799-805
    • /
    • 2016
  • Methicillin-resistant Staphylococcus aureus (MRSA), the major causative agent of nosocomial infection, has also been reported from non-human sources. A sequence type (ST) 541 MRSA isolate designated K12PJN53 was isolated from a healthy pig in 2012. The genome of K12PJN53 consists of 44 contiguous sequences (contigs), totalling 2,880,108 bases with 32.88% GC content. Among the annotated contigs, 14, 17, and 18 contained genes related to antimicrobial resistance, adherence, and toxin genes, respectively. The genomic distance of strain K12PJN53 was close to the ST398 strains. This is the first report of the draft genome sequence of a novel livestock-associated MRSA ST541 strain.

Bacterial diseases of flounder, Paralichthys olivaceus (넙치의 세균성(細菌性) 질병(疾病))

  • Kanai, Kinya
    • Journal of fish pathology
    • /
    • v.6 no.2
    • /
    • pp.197-204
    • /
    • 1993
  • Flounder culture has been developed mainly in the western parts of japan, and, to date, following six bacterial diseases have been reported. Bacterial white enteritis occurs in 16 to 30-day-old flounder larvae and often causes mass mortality in seed production. Bacterium named Vibrio sp. INFL invades and multiplies in the mucosae of posterier part of intestine, and causes desquamative enteritis. Gliding bacterial disease occurs mostly in juvenile stage and in spring to summer. Diseased signs are partial discoloration and erosion of skin and fins. Histologically, epidermis are removed, and the causative bacterium, Flexibacter maritimus, multiplies on the surface of demis and invades into the muscular tissue. Vibriosis caused by Vibrio anguillarum and related organisum is one of the well-known diseases among marine fish. Outbreaks of the disease in flounder culture are relatively few, but mass mortalities in fingerlings due to the disease were reported. An outbreak of nocardiosis in the autumn of 1984 has been reported, but since then the disease scarcely occurred. The disease is characterized by formation of abscesses under the skin and white nodes in the gill, heart, spleen and kidney. Streptococcicosis occurs frequently in recent years. Beta-hemolytic streptococcus is the causative bacterium, which possesses the same biochemical and serological characteristics as $\beta$-streptococci isolated from some marine and freshwater fish, and is seemed to related to Streptococcus iniae. Edwardsiellosis is the disease that causes most damage in flounder culture in Japan. Characteristic symptoms are swelling of abdomen and intestinal protrusion from the anus due to accumulation of ascites. Edwardsiella tarda, a well-known pathogen of freshwater fish, is the causative bacterium of the disease.

  • PDF

Seroprevalence of Q-fever in Korean native cattle (국내 서식 한우에서 큐열 항체 양성율 조사)

  • Kim, Ji-Yeon;Sung, So-Ra;Pyun, Ji-In;Her, Moon;Kang, Sung-Il;Lee, Hyang-Keun;Jung, Suk Chan
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.3
    • /
    • pp.147-150
    • /
    • 2014
  • Q-fever is a vector-borne (Coxiella [C.] burnetii) zoonotic disease that is an increasing public health concern. To date, some research about Q-fever prevalence in dairy herds and human patients has been reported in Korea, but information about Korean native cattle is scarce. To measure the prevalence rates of C. burnetii in Korean native cattle, a total of 1,095 bovine serum samples collected during 2010~2013 were analyzed with an enzyme-linked immunosorbent assay. Sixty-eight heads of cattle were diagnosed as positive and while 19 heads were suspected (positive rate = 6.2%). Interestingly, Jeju province had a seropositivity rate six times greater than that of other provinces (18.9% vs. 3.2%). High seroprevalence might be caused by wide distribution of ticks in Jeju province compared to other regions. Based on these data, extensive monitoring of C. burnetii infection in cattle, tick distribution, and climate changes is required.

Single-nucleotide polymorphism-based epidemiological analysis of Korean Mycobacterium bovis isolates

  • Kim, Tae-Woon;Jang, Yun-Ho;Jeong, Min Kyu;Seo, Yoonjeong;Park, Chan Ho;Kang, Sinseok;Lee, Young Ju;Choi, Jeong-Soo;Yoon, Soon-Seek;Kim, Jae Myung
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.24.1-24.16
    • /
    • 2021
  • Background: Bovine tuberculosis (TB) is caused by Mycobacterium bovis, a well-known cause of zoonotic tuberculosis in cattle and deer, and has been investigated in many physiological and molecular studies. However, detailed genome-level studies of M. bovis have not been performed in Korea. Objectives: To survey whole genome-wide single-nucleotide polymorphism (SNP) variants in Korean M. bovis field isolates and to define M. bovis groups in Korea by comparing SNP typing with spoligotyping and variable number tandem repeat typing. Methods: A total of 46 M. bovis field isolates, isolated from laryngopharyngeal lymph nodes and lungs of Korean cattle, wild boar, and Korean water deer, were used to identify SNPs by performing whole-genome sequencing. SNP sites were confirmed via polymerase chain reaction using 87 primer pairs. Results: We identified 34 SNP sites with different frequencies across M. bovis isolates, and performed SNP typing and epidemiological analysis, which divided the 46 field isolates into 16 subtypes. Conclusions: Through SNP analysis, detailed differences in samples with identical spoligotypes could be detected. SNP analysis is, therefore, a useful epidemiological tracing tool that could enable better management of bovine TB, thus preventing further outbreaks and reducing the impact of this disease.

Outbreak and Spread of Bacterial Canker in Kiwifruit (참다래 궤양병의 격발 및 확산)

  • 고영진;차병진;정희정;이동현
    • Korean Journal Plant Pathology
    • /
    • v.10 no.1
    • /
    • pp.68-72
    • /
    • 1994
  • Bacterial canker of kiwifruit recently outbroke throughout the southcoast of Korea, the major production areas of kiwifruit. Some orchards were destroyed because of severe damage by the epidemics of the bacterial canker, especially in Jeju-si and Bukjeju-kun, Jeju and Goheung-kun and Wando-kun, Chonnam. The bacterial canker, which has been occurred in Jeju from the mid 1980s, was first observed in Haenam-kun, Chonnam in 1991. The disease outbroken throughout the southcoast of Korea caused extremely severe damages and the diseased areas are increasing continuously. The possibility that the bacterial canker was introduced from Japan into Jeju is high, although the path of the epidemic is still not clear. And then the bacterial canker may spread from Jeju to Haenam and/or Wando, from which the disease may spread to the southcoast of Chonnam and the westcoast of Kyungnam in Korea.

  • PDF

Bacterial Branch Blight of Peach Tree Caused by Xanthomonas arboricora pv. pruni (Xanthomonas arboricora pv. pruni에 의한 복숭아 세균성가지마름병의 발생)

  • 김종완
    • Plant Disease and Agriculture
    • /
    • v.5 no.2
    • /
    • pp.115-118
    • /
    • 1999
  • A new bacterial disease was found on trees of peach(Prunus persica var. vulgaris Max) at Kumho Kyungbuk in April 1999. The disease usually occured on over wintered buds branchs and stems of the Cheon-Hong cultivar. The buds died without sprouting and the branches showed entire wilting Droplets of bacterial ooze was occasionally running down the surface of diseased plants under moist condition. Artificial needle prick inoculation with isolates obtained from branchs of naturally infected plants produced symptoms similar to those occuring under natural condition. On the basis of bacteriological characteristics and pathogenicity on the host plant of the organism the causal bacterium was identified as Xanthomonas arboricora pv. pruni and this disease was proposed to name "Bacterial branch blight of the peach tree"

  • PDF

Application of Bacterial Endophytes to Control Bacterial Leaf Blight Disease and Promote Rice Growth

  • Ooi, Ying Shing;Nor, Nik M.I. Mohamed;Furusawa, Go;Tharek, Munirah;Ghazali, Amir H.
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.490-502
    • /
    • 2022
  • Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) disease in rice (Oryza sativa L.) and it is among the most destructive pathogen responsible for severe yield losses. Potential bacterial biocontrol agents (BCAs) with plant growth promotion (PGP) abilities can be applied to better manage the BLB disease and increase crop yield, compared to current conventional practices. Thus, this study aimed to isolate, screen, and identify potential BCAs with PGP abilities. Isolation of the BCAs was performed from internal plant tissues and rhizosphere soil of healthy and Xoo-infected rice. A total of 18 bacterial strains were successfully screened for in vitro antagonistic ability against Xoo, siderophore production and PGP potentials. Among the bacterial strains, 3 endophytes, Bacillus sp. strain USML8, Bacillus sp. strain USML9, and Bacillus sp. strain USMR1 which were isolated from diseased plants harbored the BCA traits and significantly reduced leaf blight severity of rice. Simultaneously, the endophytic BCAs also possessed plant growth promoting traits and were able to enhance rice growth. Application of the selected endophytes (BCAs-PGP) at the early growth stage of rice exhibited potential in suppressing BLB disease and promoting rice growth.

D-PSA-K: A Model for Estimating the Accumulated Potential Damage on Kiwifruit Canes Caused by Bacterial Canker during the Growing and Overwintering Seasons

  • Do, Ki Seok;Chung, Bong Nam;Joa, Jae Ho
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.537-544
    • /
    • 2016
  • We developed a model, termed D-PSA-K, to estimate the accumulated potential damage on kiwifruit canes caused by bacterial canker during the growing and overwintering seasons. The model consisted of three parts including estimation of the amount of necrotic lesion in a non-frozen environment, the rate of necrosis increase in a freezing environment during the overwintering season, and the amount of necrotic lesion on kiwifruit canes caused by bacterial canker during the overwintering and growing seasons. We evaluated the model's accuracy by comparing the observed maximum disease incidence on kiwifruit canes against the damage estimated using weather and disease data collected at Wando during 1994-1997 and at Seogwipo during 2014-2015. For the Hayward cultivar, D-PSA-K estimated the accumulated damage as approximately nine times the observed maximum disease incidence. For the Hort16A cultivar, the accumulated damage estimated by D-PSA-K was high when the observed disease incidence was high. D-PSA-K could assist kiwifruit growers in selecting optimal sites for kiwifruit cultivation and establishing improved production plans by predicting the loss in kiwifruit production due to bacterial canker, using past weather or future climate change data.