DOI QR코드

DOI QR Code

Single-nucleotide polymorphism-based epidemiological analysis of Korean Mycobacterium bovis isolates

  • Kim, Tae-Woon (Bacterial Disease Division, Animal and Plant Quarantine Agency) ;
  • Jang, Yun-Ho (Bacterial Disease Division, Animal and Plant Quarantine Agency) ;
  • Jeong, Min Kyu (Bacterial Disease Division, Animal and Plant Quarantine Agency) ;
  • Seo, Yoonjeong (Bacterial Disease Division, Animal and Plant Quarantine Agency) ;
  • Park, Chan Ho (Gangwondo Livestock & Veterinary Service) ;
  • Kang, Sinseok (Chung Cheongbukdo Livestock & Veterinary Service) ;
  • Lee, Young Ju (College of Veterinary Medicine, Kyungpook National University) ;
  • Choi, Jeong-Soo (Bacterial Disease Division, Animal and Plant Quarantine Agency) ;
  • Yoon, Soon-Seek (Bacterial Disease Division, Animal and Plant Quarantine Agency) ;
  • Kim, Jae Myung (Bacterial Disease Division, Animal and Plant Quarantine Agency)
  • Received : 2020.11.01
  • Accepted : 2021.01.15
  • Published : 2021.03.31

Abstract

Background: Bovine tuberculosis (TB) is caused by Mycobacterium bovis, a well-known cause of zoonotic tuberculosis in cattle and deer, and has been investigated in many physiological and molecular studies. However, detailed genome-level studies of M. bovis have not been performed in Korea. Objectives: To survey whole genome-wide single-nucleotide polymorphism (SNP) variants in Korean M. bovis field isolates and to define M. bovis groups in Korea by comparing SNP typing with spoligotyping and variable number tandem repeat typing. Methods: A total of 46 M. bovis field isolates, isolated from laryngopharyngeal lymph nodes and lungs of Korean cattle, wild boar, and Korean water deer, were used to identify SNPs by performing whole-genome sequencing. SNP sites were confirmed via polymerase chain reaction using 87 primer pairs. Results: We identified 34 SNP sites with different frequencies across M. bovis isolates, and performed SNP typing and epidemiological analysis, which divided the 46 field isolates into 16 subtypes. Conclusions: Through SNP analysis, detailed differences in samples with identical spoligotypes could be detected. SNP analysis is, therefore, a useful epidemiological tracing tool that could enable better management of bovine TB, thus preventing further outbreaks and reducing the impact of this disease.

Keywords

Acknowledgement

This research was conducted by the Animal & Plant Quarantine Agency, Ministry of Agriculture, Food and Rural affairs, Republic of Korea (project C-1543081-2014-16-01).

References

  1. Liebana E, Aranaz A, Francis B, Cousins D. Assessment of genetic markers for species differentiation within the Mycobacterium tuberculosis complex. J Clin Microbiol. 1996;34(4):933-938. https://doi.org/10.1128/jcm.34.4.933-938.1996
  2. Hauer A, Michelet L, De Cruz K, Cochard T, Branger M, Karoui C, et al. MIRU-VNTR allelic variability depends on Mycobacterium bovis clonal group identity. Infect Genet Evol. 2016;45:165-169. https://doi.org/10.1016/j.meegid.2016.08.038
  3. Aranaz A, Liebana E, Mateos A, Dominguez L, Vidal D, Domingo M, et al. Spacer oligonucleotide typing of Mycobacterium bovis strains from cattle and other animals: a tool for studying epidemiology of tuberculosis. J Clin Microbiol. 1996;34(11):2734-2740. https://doi.org/10.1128/jcm.34.11.2734-2740.1996
  4. Je S, Ku BK, Jeon BY, Kim JM, Jung SC, Cho SN. Extent of Mycobacterium bovis transmission among animals of dairy and beef cattle and deer farms in South Korea determined by variable-number tandem repeats typing. Vet Microbiol. 2015;176(3-4):274-281. https://doi.org/10.1016/j.vetmic.2015.01.002
  5. Nam HM, Yoon H, Kim CH, Wee SH. Epidemiological characteristics of bovine tuberculosis in the Republic of Korea, 2000-2004. Prev Vet Med. 2012;36:11-17. https://doi.org/10.1016/S0167-5877(98)00076-2
  6. Kahla IB, Henry M, Boukadida J, Drancourt M. Pyrosequencing assay for rapid identification of Mycobacterium tuberculosis complex species. BMC Res Notes. 2011;4(1):423. https://doi.org/10.1186/1756-0500-4-423
  7. Guimaraes AM, Zimpel CK. Mycobacterium bovis: from genotyping to genome sequencing. Microorganisms. 2020;8(5):667. https://doi.org/10.3390/microorganisms8050667
  8. Roetzer A, Diel R, Kohl TA, Ruckert C, Nubel U, Blom J, et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med. 2013;10(2):e1001387. https://doi.org/10.1371/journal.pmed.1001387
  9. Merker M, Kohl TA, Roetzer A, Truebe L, Richter E, Rusch-Gerdes S, et al. Whole genome sequencing reveals complex evolution patterns of multidrug-resistant Mycobacterium tuberculosis Beijing strains in patients. PLoS One. 2013;8(12):e82551. https://doi.org/10.1371/journal.pone.0082551
  10. Biek R, O'Hare A, Wright D, Mallon T, McCormick C, Orton RJ, et al. Whole genome sequencing reveals local transmission patterns of Mycobacterium bovis in sympatric cattle and badger populations. PLoS Pathog. 2012;8(11):e1003008. https://doi.org/10.1371/journal.ppat.1003008
  11. Ranade K, Chang MS, Ting CT, Pei D, Hsiao CF, Olivier M, et al. High-throughput genotyping with single nucleotide polymorphisms. Genome Res 2001;11(7):1262-1268. https://doi.org/10.1101/gr.157801
  12. Huard RC, Fabre M, de Haas P, Lazzarini LC, van Soolingen D, Cousins D, et al. Novel genetic polymorphisms that further delineate the phylogeny of the Mycobacterium tuberculosis complex. J Bacteriol. 2006;188(12):4271-4287. https://doi.org/10.1128/JB.01783-05
  13. Lopes JS, Marques I, Soares P, Nebenzahl-Guimaraes H, Costa J, Miranda A, et al. SNP typing reveals similarity in Mycobacterium tuberculosis genetic diversity between Portugal and Northeast Brazil. Infect Genet Evol. 2013;18:238-246. https://doi.org/10.1016/j.meegid.2013.04.028
  14. Stucki D, Malla B, Hostettler S, Huna T, Feldmann J, Yeboah-Manu D, et al. Two new rapid SNP-typing methods for classifying Mycobacterium tuberculosis complex into the main phylogenetic lineages. PLoS One. 2012;7(7):e41253. https://doi.org/10.1371/journal.pone.0041253
  15. Abadia E, Sequera M, Ortega D, Mendez MV, Escalona A, Da Mata O, et al. Mycobacterium tuberculosis ecology in Venezuela: epidemiologic correlates of common spoligotypes and a large clonal cluster defined by MIRU-VNTR-24. BMC Infect Dis. 2009;9(1):122. https://doi.org/10.1186/1471-2334-9-122
  16. Joshi D, Harris NB, Waters R, Thacker T, Mathema B, Krieswirth B, et al. Single nucleotide polymorphisms in the Mycobacterium bovis genome resolve phylogenetic relationships. J Clin Microbiol. 2012;50(12):3853-3861. https://doi.org/10.1128/JCM.01499-12
  17. Zimpel CK, Patane JS, Guedes AC, de Souza RF, Silva-Pereira TT, Camargo NC, et al. Global distribution and evolution of Mycobacterium bovis lineages. Front Microbiol. 2020;11:843. https://doi.org/10.3389/fmicb.2020.00843
  18. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35(4):907-914. https://doi.org/10.1128/jcm.35.4.907-914.1997
  19. Le Fleche P, Fabre M, Denoeud F, Koeck JL, Vergnaud G. High resolution, on-line identification of strains from the Mycobacterium tuberculosis complex based on tandem repeat typing. BMC Microbiol. 2002;2(1):37. https://doi.org/10.1186/1471-2180-2-37
  20. Kim N, Jang Y, Kim JK, Ryoo S, Kwon KH, Kang SS, et al. Complete genome sequence of Mycobacterium bovis clinical strain 1595, isolated from the laryngopharyngeal lymph node of South Korean cattle. Genome Announc. 2015;3(5):e01124-e01115.
  21. Gutacker MM, Mathema B, Soini H, Shashkina E, Kreiswirth BN, Graviss EA, et al. Single-nucleotide polymorphism-based population genetic analysis of Mycobacterium tuberculosis strains from 4 geographic sites. J Infect Dis. 2006;193(1):121-128. https://doi.org/10.1086/498574
  22. Garcia Pelayo MC, Uplekar S, Keniry A, Mendoza Lopez P, Garnier T, Nunez Garcia J, et al. A comprehensive survey of single nucleotide polymorphisms (SNPs) across Mycobacterium bovis strains and M. bovis BCG vaccine strains refines the genealogy and defines a minimal set of SNPs that separate virulent M. bovis strains and M. bovis BCG strains. Infect Immun. 2009;77(5):2230-2238. https://doi.org/10.1128/IAI.01099-08
  23. Coll F, McNerney R, Guerra-Assuncao JA, Glynn JR, Perdigao J, Viveiros M, et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun. 2014;5(1):4812. https://doi.org/10.1038/ncomms5812
  24. Ducey TF, Page B, Usgaard T, Borucki MK, Pupedis K, Ward TJ. A single-nucleotide-polymorphismbased multilocus genotyping assay for subtyping lineage I isolates of Listeria monocytogenes. Appl Environ Microbiol. 2007;73(1):133-147. https://doi.org/10.1128/AEM.01453-06
  25. Chen Y, Zhang W, Knabel SJ. Multi-virulence-locus sequence typing identifies single nucleotide polymorphisms which differentiate epidemic clones and outbreak strains of Listeria monocytogenes. J Clin Microbiol. 2007;45(3):835-846. https://doi.org/10.1128/JCM.01575-06
  26. Liu W, Zhao H, Qiu Z, Jin M, Yang D, Xu Q, et al. Identifying geographic origins of the Escherichia coli isolates from food by a method based on single-nucleotide polymorphisms. J Microbiol Methods. 2020;168:105807. https://doi.org/10.1016/j.mimet.2019.105807
  27. Animal and Plant Health Agency. Bovine TB Epidemiology and Surveillance in Great Britain, 2018. Inverness: Animal and Plant Health Agency; 2018.
  28. Perea Razo CA, Rodriguez Hernandez E, Ponce SI, Milian Suazo F, Robbe-Austerman S, Stuber T, et al. Molecular epidemiology of cattle tuberculosis in Mexico through whole-genome sequencing and spoligotyping. PLoS One. 2018;13(8):e0201981. https://doi.org/10.1371/journal.pone.0201981
  29. Figueiredo Rocha VC, de Souza-Filho AF, Ikuta CY, Hildebrand E Grisi Filho JH, de Azevedo Issa M, Coelho Mota PM, et al. High discrimination of Mycobacterium bovis isolates in Brazilian herds by spoligotyping. Prev Vet Med. 2020;179:104976. https://doi.org/10.1016/j.prevetmed.2020.104976
  30. Boniotti MB, Goria M, Loda D, Garrone A, Benedetto A, Mondo A, et al. Molecular typing of Mycobacterium bovis strains isolated in Italy from 2000 to 2006 and evaluation of variable-number tandem repeats for geographically optimized genotyping. J Clin Microbiol. 2009;47(3):636-644. https://doi.org/10.1128/JCM.01192-08
  31. Duarte EL, Domingos M, Amado A, Cunha MV, Botelho A. MIRU-VNTR typing adds discriminatory value to groups of Mycobacterium bovis and Mycobacterium caprae strains defined by spoligotyping. Vet Microbiol. 2010;143(2-4):299-306. https://doi.org/10.1016/j.vetmic.2009.11.027
  32. Rodriguez-Campos S, Navarro Y, Romero B, de Juan L, Bezos J, Mateos A, et al. Splitting of a prevalent Mycobacterium bovis spoligotype by variable-number tandem-repeat typing reveals high heterogeneity in an evolving clonal group. J Clin Microbiol. 2013;51(11):3658-3665. https://doi.org/10.1128/JCM.01271-13
  33. Jang Y, Ryoo S, Lee H, Kim N, Lee H, Park SY, et al. Isolation of Mycobacterium bovis from free-ranging wildlife in South Korea. J Wildl Dis. 2017;53(1):181-185. https://doi.org/10.7589/2015-11-295
  34. Matsuda K. PCR-based detection methods for single-nucleotide polymorphism or mutation: real-time PCR and its substantial contribution toward technological refinement. Adv Clin Chem. 2017;80:45-72. https://doi.org/10.1016/bs.acc.2016.11.002
  35. Landolt P, Stephan R, Stevens MJ, Scherrer S. Three-reaction high-resolution melting assay for rapid differentiation of Mycobacterium tuberculosis complex members. MicrobiologyOpen. 2019;8(12):e919.
  36. Landolt P, Stephan R, Scherrer S. Development of a new high resolution melting (HRM) assay for identification and differentiation of Mycobacterium tuberculosis complex samples. Sci Rep. 2019;9(1):1850. https://doi.org/10.1038/s41598-018-38243-6
  37. Cancino-Munoz I, Gil-Brusola A, Torres-Puente M, Mariner-Llicer C, Dogba J, Akinseye V, et al. Development and application of affordable SNP typing approaches to genotype Mycobacterium tuberculosis complex strains in low and high burden countries. Sci Rep. 2019;9(1):15343. https://doi.org/10.1038/s41598-019-51326-2
  38. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63. https://doi.org/10.1093/nar/28.12.e63
  39. Ren Y, Li Y, Duan X, Wang H, Wang H, Li Z. One-step quantitative single nucleotide polymorphism (SNP) diagnosis by modified loop-mediated isothermal amplification (mLAMP). ChemistrySelect. 2019;4(4):1423-1427. https://doi.org/10.1002/slct.201802693