• Title/Summary/Keyword: bacterial

Search Result 9,304, Processing Time 0.054 seconds

Diagnostic Evaluation of the BioFire® Meningitis/Encephalitis Panel: A Pilot Study Including Febrile Infants Younger than 90 Days (BioFire® Meningitis/Encephalitis Panel의 진단적 유용성 평가: 90일 미만 발열영아에서의 예비 연구)

  • Kim, Kyung Min;Park, Ji Young;Park, Kyoung Un;Sohn, Young Joo;Choi, Youn Young;Han, Mi Seon;Choi, Eun Hwa
    • Pediatric Infection and Vaccine
    • /
    • v.28 no.2
    • /
    • pp.92-100
    • /
    • 2021
  • Purpose: Rapid detection of etiologic organisms is crucial for initiating appropriate therapy in patients with central nervous system (CNS) infection. This study aimed to evaluate the diagnostic value of the BioFire® Meningitis/Encephalitis (ME) panel in detecting etiologic organisms in cerebrospinal fluid (CSF) samples from febrile infants. Methods: CSF samples from infants aged <90 days who were evaluated for fever were collected between January 2016 and July 2019 at the Seoul National University Children's Hospital. We performed BioFire® ME panel testing of CSF samples that had been used for CSF analysis and conventional tests (bacterial culture, Xpert® enterovirus assay, and herpes simplex virus-1 and -2 polymerase chain reaction) and stored at -70℃ until further use. Results: In total, 72 (24 pathogen-identified and 48 pathogen-unidentified) CSF samples were included. Using BioFire® ME panel testing, 41 (85.4%) of the 48 pathogen-unidentified CSF samples yielded negative results and 22 (91.7%) of the 24 pathogen-identified CSF samples yielded the same results (enterovirus in 19, Streptococcus agalactiae in 2, and Streptococcus pneumoniae in 1) as those obtained using the conventional tests, thereby resulting in an overall agreement of 87.5% (63/72). Six of the 7 pathogen-unidentified samples were positive for human parechovirus (HPeV) via BioFire® ME panel testing. Conclusions: Compared with the currently available etiologic tests for CNS infection, BioFire® ME panel testing demonstrated a high agreement score for pathogen-identified samples and enabled HPeV detection in young infants. The clinical utility and cost-effectiveness of BioFire® ME panel testing in children must be evaluated for its wider application.

Antimicrobial Synergistic Effects of Gallnut Extract and Natural Product Mixture against Human Skin Pathogens (피부 병원성균에 대한 오배자 천연 복합물의 시너지 항균 효과)

  • Kim, Ju Hee;Choi, Yun Sun;Kim, Wang Bae;Park, Jin Oh;Im, Dong Joong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.155-161
    • /
    • 2021
  • This study was attempted to investigate natural materials with antimicrobial activity and to apply as natural preservatives in cosmetics. The disc diffusion method was used to search for nine species of natural antibacterial material for three species of skin pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa) and Candida albicans. As a result of measuring the size of inhibition zone, Rhus Semialata gall (Gallnut) extract, Oak vinegar, and ε-polylysine were showed strongest antibacterial activities (> 10 mm). The Minimum Bactericidal Concentration (MBC) of gallnut and oak vinegar ranged from 10 to 20 mg/mL and from 20 to 40 mg/mL against five human skin pathogens. The MBC of ε-polylysine ranged from 0.5 to 2 mg/mL in fungus. The synergic effect of gallnut extract/oak vinegar mixture and gallnut extract/ε-polylysine mixture were evaluated by checkerboard test. Compared to when used alone, the MBC of gallnut extract/oak vinegar mixture were at 4 times lower concentration against E. coli, C. albicans, and A. brasiliensis. Also Furthermore, the MBC of gallnut extract/ε-polylysine mixture were at 4 times lower concentration against C. albicans and A. brasiliensis. It was confirmed that the combination of gallnut extract with oak vinegar or ε-polylysine resulted in synergistic antibacterial effect against three human skin pathogens. Thus, it is expected that gallnut extract and natural product mixture can not only demonstrate antibacterial synergies, but also be applied in cosmetics as a natural preservative system with a wide antibacterial spectrum.

Effects of Physical and Chemical Treatment as the Pretreatments on Microorganisms and Quality Characteristics of Allium monanthum (전처리 방법이 달래의 품질 특성과 미생물 저감에 미치는 영향)

  • Shim, Hyun-Jeong;Seong, Ok-Lan;Cho, Yong-Sik;Jang, Hyun-Wook;Hwang, Young
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.6
    • /
    • pp.510-519
    • /
    • 2021
  • The purpose of this study was to investigate the effect of the microbial reduction and quality maintenance of the physical and chemical pretreatment of Allium monanthum. For physical treatment, handwash, bubble wash and ultrasonication were conducted at 50℃ and 60℃ for 1, 3 and 5 minutes, respectively, and for chemical treatment the sample was immersed in fumaric acid and acetic acid of 1.5% and 2% concentrations for 1, 3 and 5 minutes, respectively. As a result of the microorganism and quality analysis, 3 minutes of bubble wash was the most effective physical pretreatment in reducing fungi although the effect on reducing total viable bacterial was small. Furthermore, 5 minutes of ultrasonication at 60℃ significantly reduced microorganisms, but also resulted in the reduction of the a value of chromaticity, which cause the green color to fade. With chemical pretreatment, it was found that treating with fumaric acid was more effective in reducing the total viable bacteria and fungi than acetic acid. The result shows that 1.5% concentration of fumaric acid is the most effective with 3 minutes of treatment time. The quality of Allium monanthum were compared in the combination of the two most effective microorganism reduction pretreatments: 3 minutes of bubble wash (B3) and 3 minutes in 1.5% fumaric acid (F153). As a result of analyzing the quality characteristics over 9 days of storage at 4℃ after the treatments, it was revealed that the BF treatment is more effective in reducing fungi than the total viable bacteria. The results shows that the BF treatment is more effective in reducing total viable bacteria, whereas the F153 treatment is more effective in reducing fungi. Also, it was found that the 𝚫E value in BF was the lowest, whereas F153 treatment showed the green color faded. The maximum cohesiveness changed more significantly in the green stems than in the roots. On the 9th day of storage, the hardness of the green stem was found to be maintained at the highest level (P<0.05) after F153 treatment, whereas that of the roots decreased (P<0.05) since the 6th day after the bubble wash. Considering the reduction of microorganisms and the quality maintenance of Allium monanthum, the most effective pretreatment methods were 3 minutes in 1.5% fumaric acid for reducing microorganisms and maintaining color and maximum cohesiveness, and the combined process could also be effective if the expiration period is within 3 days.

Distribution of Culturable Bacteria of Bioaerosol according to Land Type in Winter in the City Center (도심지 겨울철 토지피복 유형별 바이오에어로졸 중 배양성 세균 분포)

  • Kim, Jeong-Ho;Yun, Yong-Han;Kim, Hak-Gi;Lee, Myeong-Hun;Park, Yeong-jin;Lee, Dong-Jae;Sin, Yong-jin
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.6
    • /
    • pp.669-678
    • /
    • 2021
  • This study surveyed three land cover types in Chungju City in Chungcheongbuk Province to check the distribution of cultured bacteria in bio-aerosols according to land cover type. It was possible to compare and analyze the distribution of bacteria according to microclimatic changes at each measurement point by examining meteorological factors and bio-aerosols according to land cover. The microclimate temperature in each measurement point was 8.7℃ for the urban forest, 10.8℃ for the waterside green area, and 10.2℃ for the urban area, indicating the urban forest had the lowest temperature among the measurement points. The relative humanity was 61.8% fin the urban forest, 59.3% in the waterside green area, and 55.7% in the urban area, indicating that the urban forest was the most humid among the measurement points. The identified bacteria were found to be 43 genera and 99 species. In terms of species diversity of cultured bacteria, 22 genera were found in the waterside green area, 21 genera in the urban forest, and 17 genera in the urban area, 37 species were found in the waterside green area, 31 species in the urban area, and 31 species in the urban forest. Bacillus toyonensis and Pseudarthrobacter oxydan were the species present in all three types of measurement sites, and Herbiconiux flava was confirmed to inhabit green areas such as urban forests and waterside green areas. The analysis result of the bacterial concentration according to the microclimatic environment in each measurement point was 333 CFU/m3 in the urban forest, 287 CFU/m3, in the waterside green area, and 173 CFU/m3 in the downtown area. The relative humidity and wind speed were analyzed to show a similar trend as the concentration. This study is expected to provide basic data for healthy urban management and green area creation by identifying the distribution of cultured bacteria in bio-aerosols according to land cover type and comparing and analyzing the traits of bio-aerosol in each measurement point.

Effect of Sterilization Conditions on Microbial Reduction in Cleaning Tools (살균 조건이 세척 도구 중 미생물 저감화에 미치는 영향)

  • Im, Ji-Yu;Kim, Chae-Young;Kim, Eun-yeong;Kim, Min-jin;Kim, Jung-Beom
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.5
    • /
    • pp.310-316
    • /
    • 2022
  • In this study, we compared the microbial reduction effects of drying, hot water, and microwave sterilization in scourers and dishcloths to suggest a most suitable sterilization method. Three scourer types (silver, copper, and mesh) were used, and three dishcloth types (silver, bamboo, and cotton) were used. Drying time dependent reduction in Escherichia coli was high in silver and copper scourers, but minimal bacterial reduction was obtained against Bacillus cereus in all scourers and dishcloths. In scourers, E. coli was not detected after ≥30 s of hot water sterilization at 77℃, and B. cereus was not detected after ≥60 s of hot water sterilization at 100℃. In dishcloths, E. coli was not detected after hot water sterilization at 77℃ for ≥30 s, but B. cereus was detected after hot water sterilization at 100℃ for ≥60 s. In scourers, E. coli was not detected after microwave sterilization at 700 W for 3 min, but B. cereus was detected. In dishcloths, E. coli was not detected after microwave sterilization with 700 W for ≥1 min, but B. cereus was detected in the cotton dishcloth even after sterilization for 3 min. In conclusion, the use of antimicrobial scourers (silver and copper) and dishcloths (silver and bamboo) are not sufficient to reduce the microbial contamination. The guideline provided by the Ministry of Food and Drug Safety suggesting dishcloth sterilization via hot water at 100℃ for 30 s was also found to be insufficient. Based on our research, we suggest that the most effective methods of microbial management are submerging scourers in hot water at 100℃ for ≥1 min, and sterilizing dishcloths for ≥3 min using a 700 W microwave.

A Review on Ocean Acidification and Factors Affecting It in Korean Waters (우리나라 주변 바다의 산성화 현황과 영향 요인 분석)

  • Kim, Tae-Wook;Kim, Dongseon;Park, Geun-Ha;Ko, Young Ho;Mo, Ahra
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.91-109
    • /
    • 2022
  • The ocean is a significant sink for atmospheric anthropogenic CO2, absorbing one-third of the total CO2 emitted by human activities. In return, oceans have experienced significant declines in seawater pH and the aragonite saturation state also called ocean acidification. This study evaluates the distribution of aragonite saturation state, an indicator to assess the potential threat from ocean acidification, by combining newly obtained data from the west coast of South Korea with previous datasets covering the Yellow Sea, East Sea, northern South China Sea, and southeast coast of South Korea. In general, offshore waters absorb atmospheric CO2; however, most of the collected water samples show aragonite oversaturation. On the southeast coast, the aragonite saturation state was significantly affected by river discharge and associated variables, such as freshwater input with nutrients, seasonal stratification, biological carbon fixation, and bacterial remineralization. In summer, hypoxia and mixing with relatively acidic freshwater made the Jinhae and Gwangyang Bays undersaturated with respect to aragonite, possibly threatening marine organisms with CaCO3 shells. However, widespread aragonite undersaturation was not observed on the west coast, which receives considerable river water discharge. In addition, occasional upwelling events may have worsened the ocean acidification in the southwestern part of the East Sea. These results highlight the importance of investigating site-specific ocean acidification processes in coastal waters. Along with the above-mentioned seasonal factors, the dissolution of atmospheric CO2 and the deposition of atmospheric acidic substances will continue to reduce the aragonite saturation state in Korean waters. To protect marine ecosystems and resources, an ocean acidification monitoring program should be established for Korean waters.

Biological Treatment of Piggery Liquid Manure by Malodor Reducing Bacteria (악취 저감용 세균에 의한 돈분뇨의 생물학적 처리)

  • Quan, Xiao-Tian;Shin, Jae-Hyeong;Wang, Yan-Qing;Choi, Min-Gyung;Kim, Sang-Min;Kim, Soo-Ki
    • Journal of Life Science
    • /
    • v.32 no.12
    • /
    • pp.971-978
    • /
    • 2022
  • Sulfur-oxidizing, ammonium-oxidizing, and nitrogen-oxidizing media were used to isolate bacteria to degrade malodor gas effectively in piggery manure or soil. Twelve different strains were isolated: Paenibacillus amylolyticus, Rhodococcus jostii, Rhodococcus qingshengii, Rhodococcus opacus, Alcaligenes faecalis, Alcaligenes faecalis, Kastia adipate, Kastia adipata, Microbacterium oxydans, Halomonas campisalis, Acinetobacter oleivorans, and Micrococcus luteus. By inoculating each strain in the piggery liquid manure by 1%, the pH in most strain treatments was maintained at 8.0. Total bacterial counts were maintained at 7.3~7.9 log CFU/ml until 15 days, and then they dropped dramatically down to 5.1~5.5 log CFU/ml. On the 30th day, the treatment group inoculated with Rhodococcus opacus SK2659 showed a relatively high level of ammonium nitrogen removal, which was 39% of that of the control group. When Rhodococcus opacus SK2659 was inoculated, H2S concentration after 100 days was 3.23% compared with the control (no inoculation), suggesting that Rhodococcus opacus SK2659 is an excellent strain for removing malodor gas. The gas production of the treatments was lower than that of the control. The total accumulated amount of gas production in most strain treatments was a quarter of the gas production compared to the control throughout the experimental periods. Acinetobacter oleivorans SK2675 showed the lowest level at 12.39% compared to the control in gas production. In conclusion, the use of mixture strains, such as Rhodococcus opacus SK2659 and Acinetobacter oleivorans SK2675 isolated in this study could increase the efficacy of malodor gas reduction in the biological treatment of piggery manure.

Effects of Dry Heat Treatment on the Reduction of Main Food-Borne Bacteria on Alfalfa Seeds (건열처리를 이용한 알팔파의 주요 식중독균 저감화)

  • Hong, Soon-Young;Kim, Su-jin;Bang, Woo-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.4
    • /
    • pp.225-231
    • /
    • 2022
  • In this study, the conditions of dry heat treatment (21 days at 65℃, 16 days at 70℃, 10 days at 75℃, and 7 days at 80℃) were investigated to inactivate Bacillus cereus ATCC 12480, Listeria monocytogenes ATCC SSA81, Staphylococcus aureus ATCC 6538, Escherichia coli O157:H7 ATCC 43894, and Salmonella Typhimurium ATCC 14028 on alfalfa seeds, without affecting the rate of germination of seeds. Alfalfa seeds were inoculated at levels of 6-7 log CFU/g and treated with dry heat at 65℃, 70℃, 75℃, and 80℃; thereafter, the rate of seed germination was determined. The rate of germination was set at 70%, according to the market standards. The bacteria were inactivated when B. cereus was treated with dry heat for 21 days at 65℃, 18 days at 70℃, 14 days at 75℃, and 4 days at 80℃; L. monocytogenes was treated for 21 days at 65℃, 18 days at 70℃, 12 days at 75℃, and 7 days at 80℃; S. aureus was treated for 18 days at 65℃, 18 days at 70℃, 11 days at 75℃, and 4 days at 80℃; E. coli O157:H7 was treated for 21 days at 65℃, 18 days at 70℃, 12 days at 75℃, and 6 days at 80℃; and Sal. Typhimurium was treated for 24 days at 65℃, 22 days at 70℃, 14 days at 75℃, and 7 days at 80℃. For all bacteria, the D-value (R2 = 0.5656-0.7957) significantly decreased when the temperature increased from 65℃ to 80℃ (P<0.05). Since dry heat treatment of alfalfa seeds at 80℃ for 7 days affects their germination rate, dry heat treatment at 75℃ for 14 days is the most effective way to ensure their safety. This study suggests a potential method of bacterial inactivation using dry heat treatment to increase the microbiological safety of sprouts.

The Effect of Single and Mixed Microbial Inoculation on the in situ Fiber Digestibility and Silage of Rice Straw Contaminated Mycotoxins (단일 및 복합 미생물 접종이 곰팡이독소 오염 볏짚의 사일리지 및 In situ 섬유소 소화율에 미치는 영향)

  • Ha Guyn Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.4
    • /
    • pp.229-236
    • /
    • 2022
  • This study was conducted to evaluate the efficacy of adding the microbial inoculants to silage for reducing mycotoxins in rice straw silage. When a single agent of L. plantarum and a mixed agent of L. plantarum and S. cerevisiae were added in rice straw silage contaminated mycotoxins, it had an effect on silage fermentation and fiber degradation as well as mycotoxin reduction. Among the mycotoxins, only ochratoxin A and zearalenone were found in the test sample. Ochratoxin A and zearalenone showed a decreasing trend with the addition of silage inoculants compared to the control groups (38.11±2.22 and 633.67±50.30 ㎍/kg), and there was a significant difference at the mixed agents; 27.78±2.28 and 392.72±25.04 ㎍/kg, respectively (p<0.05). The pH was lower in the single agent and the mixed agent compared to the control (p<0.05). The concentration of lactic acid was higher in the single agent (11.73±0.31 mM) than in the control group (8.18±0.93 mM), and the highest concentration was 16.01±0.88 mM in the mixed agent (p<0.05). Acetic acid and propionic acid were found to be significantly lowered with the addition of silage inoculants (p<0.05). Total VFA was also lower at the addition of silage inoculants than the control group (p<0.05). The rumen in situ dry matter degradation of NDF and ADF was maintained at the highest levels of the mixed agent during the culture period, followed by the single agent and the control group at the lowest level. NDF and ADF degradation showed a significant difference at all time points after 12 and 24 hours of culture, respectively (p<0.05). The study results showed that the silage inoculants had the positive effects on quality increasing of rice straw silage; fermentative charateristics, fiber degradation and mycotoxins reduction. Ochratoxin A and zearalenone were greater reduction by adding bacterial inoculants of silage. Therefore it is considered that L. plantarum and S. cerevisiae will improve the quality and stability with remediation of mycotoxin in silage.

Determination of Fire Blight Susceptibility on Wild Rosaceae Plants in Korea by Artificial Inoculation (인공접종을 통한 국내 야생 장미과 식물의 화상병 감수성 검정)

  • In Woong Park;Yu-Rim Song;Eom-Ji Oh;Yoel Kim;In Sun Hwang;Mi-Jin Jeon;Chorong Ahn;Jin-Suk Kim;Soonok Kim;Chang-Sik Oh
    • Research in Plant Disease
    • /
    • v.29 no.1
    • /
    • pp.23-38
    • /
    • 2023
  • The fire blight caused by Erwinia amylovora (Ea) is a devastating disease of Rosaceae plants, including commercially important apple and pear trees. Since the first report in Korea in May 2015, it has been spreading to neighboring regions gradually. Host plants can be infected by pollinators like bees, rainfall accompanied by wind, and cultural practices such as pruning. Many studies have revealed that wild Rosaceae plants such as Cotoneaster spp., Crataegus spp., Pyracantha spp., Prunus spp., and Sorbus spp. can be reservoirs of Ea in nature. However, wild Rosaceae plants in Korea have not been examined yet whether they are susceptible to fire blight. Therefore, the susceptibility to fire blight was examined with 25 species in 10 genera of wild Rosaceae plants, which were collected during 2020-2022, by artificial inoculation. Bacterial suspension (108 cfu/ml) of Ea type strain TS3128 was inoculated artificially in flowers, leaves, stems, and fruits of each plant species, and development of disease symptoms were monitored. Moreover, the presence of Ea bacteria from inoculated samples were checked by conventional polymerase chain reaction. Total 14 species of wild Rosaceae plants showed disease symptoms of fire blight, and Ea bacteria were detected inside of inoculated plant parts. These results suggest that wild Rosaceae plants growing nearby commercial apple and pear orchards in Korea can be Ea reservoirs, and thus they should be monitored regularly to minimize the damage by Ea infection and spreading.