• Title/Summary/Keyword: backward radiation

Search Result 51, Processing Time 0.017 seconds

The Evaluation Technique of Surface Region using Backward-Radiated Ultrasound (후방 복사된 초음파를 이용한 표면 지역의 평가 기술)

  • Kwon, S.D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.4
    • /
    • pp.241-250
    • /
    • 1997
  • The velocity dispersion of surface acoustical wave(SAW) of Si layer/mesh Au/Si substrate was measured by the frequency analysis technique of backward radiation at liquid/solid interface. The difference of backward radiation patterns depending on used transducers (2, 5, 10MHz) confirmed that the backward radiation phenomenon was caused by the energy radiation from SAW generated in surface region. An ultrasonic goniometer was constructed to measure continuously the angular dependence of backscattered intensity. The angular dependences of backward radiation(5MHz) were measured for Ni layer/Al substrate specimens that were bonded by epoxy involving different content of Cu powder. It was known that the width and pattern of backward radiation had informations such as the velocity dispersion, bonding quality and structure of surface region.

  • PDF

Evaluation of Corrosion Degradation Characteristics of Turbine Blade Material Using Backward Radiated Ultrasound (후방복사된 초음파를 이용한 터빈 블레이드 재료의 부식 열화특성 평가)

  • Song, Sung-Jin;Kim, Young-H.;Bae, Dong-Ho;Jung, Min-Ho;Kwon, Sung-Duk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2322-2327
    • /
    • 2002
  • The corrosion degradation characteristics of the 12Cr alloy steel, which is widely used in fossil power plants as a turbine blade material, are evaluated nondestructively by use of the backward radiated Rayleigh surface wave. In order to evaluate corrosion degradation characteristics, we constructed automated system for the backward radiation, and the frequency dependency of the Rayleigh surface wave is investigated indirectly by measuring the angular dependency of the backward radiation of the incident ultrasonic wave in the specimens. The velocity of the surface wave decrease as the increase of the aging time in the backward radiation profile, which seems to result from the increase of the effective degrading layer thickness. And, amplitude of the surface wave increase as the aging time, which seems to result from the increase of the intergranular corrosion. The result observed in this study demonstrates high potential of the backward radiated ultrasound as a tool for the nondestructive evaluation of the corrosion degradation characteristics of the aged materials.

Spectral Backward Radiation Profile (주파수 대역별 후방복사 프로파일)

  • Kim, Hak-Joon;Kwon, Sung-Duk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.362-367
    • /
    • 2005
  • Ultrasonic backward radiation profile is frequency-dependent when the incident region has deptional gradient of acoustical properties or multi-layers. Until now, we have measured the profiles of principal frequencies of an used transducers so that it was not easy to characterize the frequency dependence of the SAW(surface acoustic wave) from the backward radiation profile. We tried to measure the spectral backward radiation profiles using DFP(digital filer package) in a Lecroy DSO(digital storage oscilloscope). The measured spectral profiles showed that the steel specimen of #1200 surface treatment have 2% SAW velocity dispersion of the loaded case and the severly rusty steel specimen have the very big changes in the shape and pattern of the spectral profile. It is concluded that the spectral backward radiation profiles could be very effective tool to evaluate the frequency dependence of surface area.

Ultrasonic Backward Radiation on Randomly Rough Surface (무작위로 거친 표면에서의 후방복사 초음파)

  • Kwon, Sung-D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.9-14
    • /
    • 2005
  • The angular dependence(profile) of backward radiated ultrasound was measured for glass specimens with random surface roughness using ultrasonic goniometer that ran changes the incident angle continuously. It was concluded that the roughened region had greater acoustic impedance than the unperturbed region. The comparison of backward radiations showed that the amplitude of peak and the area of radiation profile were increased with surface roughness. It was suggested from the sensitive dependence of the profile area that the profile of backward radiation could be applied to in the nondestructive evaluation of sulfate region. Inclined C-scan technique with the transducer inclined at Rayleigh angle showed the reverse of luminosity and the high signal to noise ratio so that it provided high resolution.

Nondestructive Characterization and In-situ Monitoring of Corrosion Degradation by Backward Radiated Ultrasound

  • Song, Sung-Jin;Kim, Young H.;Bae, Dong-Ho;Kwon, Sung D.
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.114-119
    • /
    • 2005
  • Since the degradation caused by corrosion is restricted to the surface of materials, conventional ultrasonic nondestructive evaluation methods based on ultrasonic bulk waves are not applicable to characterization of the corrosion degradation. To take care of this difficulty, a new nondestructive evaluation method that uses ultrasonic backward radiation has been proposed recently. This paper explores the potential of this newly developed method for nondestructive characterization and in-situ monitoring of corrosion degradation. Specifically, backward radiated ultrasounds from aged thermo-mechanically controlled process (TMCP) steel specimens by corrosion fatigue were measured and their characteristics were correlated to those of the aged specimens. The excellent correlation observed in the present study demonstrates the high potential of the backward radiated ultrasound as an effective tool for nondestructive characterization of corrosion degradation. In addition, the potential of the backward radiated ultrasound to in-situ monitoring of corrosion degradation is under current investigation.

Effects of Rubber Loading on the Ultrasonic Backward Radiation Profile of Leaky Lamb Wave (고무 접합이 후방복사된 리키 램파 프로파일에 미치는 영향)

  • Song, Sung-Jin;Kwon, Sung-Duk;Jung, Min-Ho;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.508-515
    • /
    • 2002
  • The characterization of adhesive property in multi-layer materials has been hot issue for a long time. In order to evaluate adhesive properties, we constructed fully automated system for the backward radiation of leaky Lamb wave. The backward radiation profiles were obtained for the bare steel plate and plates with rubber-loading. The rf waveforms and frequency spectra of backward radiation show the characteristics of involved leaky Lamb wave modes. As the thickness of rubber-loading increased, the amplitude of profile at the incident angle of $13.4^{\circ}$ exponentially decreased. Scanning the incident position over the partially rubber-loaded specimen shows good agreement with the actual rubber-loading. The backward radiation of leaky Lamb wave has great potential to evaluate the adhesive condition as well as material properties of plates.

Nondestructive Evaluation of the Characteristics of Degraded Materials Using Backward Radiated Ultrasound

  • Sung D. Kwon;Sung J. Song;Dong H. Bae;Lee, Young Z.
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1084-1092
    • /
    • 2002
  • The frequency dependency of Rayleigh surface wave is investigated indirectly by measuring the angular dependency of the backward radiation of the incident ultrasonic wave in two kinds of degraded specimens by scuffing or corrosion. Then, the frequency dependency is compared with the residual stress distribution or the corrosion-fatigue characteristics for the scuffed or corroded specimens, respectively. The width of the backward radiation profile increases with the increase of the variation in residual stress distribution for the scuffed specimens. In the corroded specimens, the profile width decreases with the increase of the effective aging layer thickness and is inversely proportional to the exponent, m, in the Paris' law that can predict the crack size increase due to fatigue. The result observed in this study demonstrates high potential of backward radiated ultrasound as a tool for nondestructive evaluation of subsurface gradient of material degradation generated by scuffing or corrosion.

Effect of Surface Flaw Type on Ultrasonic Backscattering Profile (표면결함유형이 초음파 후방산란 프로파일에 미치는 영향)

  • Kwon, Sung-D.;Yoon, Seok-S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.658-662
    • /
    • 2001
  • The classification of surface flaw types was performed on the basis of angular dependence of backscattered ultrasound. The copper line adhered on the surface, cower line filled in groove, pure groove and the normal edge were adopted as various surface flaw patterns of glass specimen. A backward longitudinal profile was formed probably by the longitudinal wane scattering at and near 1st critical angle. The wave trains at the peak angles of the backward radiation profiles showed different shapes according to the superposition ratio of scattered and leaky waves. The asymmetry of the backward radiation profile arose due to the scattering effect of flaw. The additive resonance effect of copper line appeared in the left side of the profile. The peak angles of both the longitudinal and radiation profiles were shifted toward small angle by the scattering effect.

  • PDF

Determination of Phase Velocity Dispersion Curve and Group Velocity of lamb Waves Using Backward Radiation (후방복사를 이용한 램파의 위상속도 분산과 군속도의 측정)

  • 송성진;권성덕;정용무;김영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • The guided wave has been widely employed to characterize thin plates and layered media. The dispersion curves of phase and group velocities are essential for the quantitative application of guided waves. In the present work, a fully automated system for the measurement of backward radiation of LLW has been developed. The specimen moves in two dimensional plane as well as in angular rotation. The signals of backward radiation of LLW were measured from an elastic plate in which specific modes of Lamb wave were strongly generated. Phase velocity of the corresponding modes was determined from the incident angle. The generated Lamb waves propagated forward and backward with the leakage of energy into water. Backward radiated LLW was detected by the same transducer and its frequency components were analyzed to extract the related information to the dispersion curves. The dispersion curves of phase velocity were measured by varying the incident angle. Moving the specimen in the linear direction of LLW propagation, group velocity was determined by measuring the transit time shift in the ultrasonic waveform.

Characterization of TiN Layered Substrate using Leaky Rayleigh Surface Wave (누설 레일리 표면파를 이용한 TiN 코팅 부재의 특성평가)

  • Kwon, Sung-Duk;Kim, Hak-Joon;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.1
    • /
    • pp.7-11
    • /
    • 2006
  • Since ceramic layers coated on machinery components inevitably experience the changes in their properties it is necessary to evaluate the characteristics of ceramic coating layers nondestructively for a reliable use of coated components and 4heir remaining life prediction. To address such a need, in the present study, an ultrasonic backward radiation technique is applied to investigate the characteristics of leaky Rayleigh surface waves propagating through the very thin TiN ceramic layers coated on AISI 1045 steel or austenitic 304 steel substrate with three different conditions of surface roughness, coating layer thickness and wear condition. In the experiments performed in the present work, the peak angle and the peak amplitude of ultrasonic backward radiation profile varied sensitively according to three specimen preparation renditions. in fact, this result demonstrates a high possibility of the ultrasonic backward radiation as an effective tool for the nondestructive characterization of the resting layers even in such a thin regime.