• Title/Summary/Keyword: backpropagation (BP)

Search Result 56, Processing Time 0.024 seconds

Dynamic Neural Units and Genetic Algorithms With Applications to the Optimal Control of Nonlinear Systems (신경망과 유전 알고리즘을 사용한 비선형 시스템의 최적 제어)

  • Cho Hyeon-Seob;Min Jin-Kyoung;Lee Hyung-Chung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.217-220
    • /
    • 2004
  • 'Dynamic Neural Unit'(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised loaming algorithms, such as the backpropagation (BP) algorithm, that needs training information In each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin.

  • PDF

Indirect adaptive control of nonlinear systems using Genetic Algorithm based Dynamic neural network (GA 학습 방법 기반 동적 신경 회로망을 이용한 비선형 시스템의 간접 적응 제어)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.11a
    • /
    • pp.81-84
    • /
    • 2007
  • In this thesis, we have designed the indirect adaptive controller using Dynamic Neural Units(DNU) for unknown nonlinear systems. Proposed indirect adaptive controller using Dynamic Neural Unit based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

  • PDF

Uncertainty-Compensating Neural Network Control for Nonlinear Systems (비선형 시스템의 불확실성을 보상하는 신경회로망 제어)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.152-156
    • /
    • 2008
  • We consider the problem of constructing observers for nonlinear systems with unknown inputs. Connectionist networks, also called neural networks, have been broadly applied to solve many different problems since McCulloch and Pitts had shown mathematically their information processing ability in 1943. In this thesis, we present a genetic neuro-control scheme for nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

  • PDF

Feature Extraction for Off-line Handwritten Character Recognition using SIFT Descriptor (SIFT 서술자를 이용한 오프라인 필기체 문자 인식 특징 추출 기법)

  • Park, Jung-Guk;Kim, Kyung-Joong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.496-500
    • /
    • 2010
  • 본 논문에서는 SIFT(Scale Invariant Feature Transform) 기술자를 이용하여 오프라인 필기체 문자 인식을 위한 특징 추출방법을 제안한다. 제안하는 방법은 문자의 획의 방향 정보를 제공하는 특징 벡터를 추출함으로써 오프라인 문자 인식에서 성능 향상을 기대할 수 있다. 테스트를 위해 MNIST 필기체 데이터베이스와 UJI Penchar2 필기체 데이터베이스를 이용하였고, BP(backpropagation)신경망과 LDA(Linear Discriminant Analysis), SVM(Support Vector Machine) 분류기에서 성능 테스트를 하였다. 본 논문의 실험결과에서는 일반적으로 사용되는 특징추출로부터 얻어진 특징에 제안된 특징추출을 정합하여 성능항샹을 보인다.

  • PDF

Identification of Partial Discharge Defect Detection in Cast-Resin Power Transformers Using Back-Propagation Algorithm

  • Sung-Wook Kim
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.3
    • /
    • pp.231-236
    • /
    • 2024
  • This paper presents a method used to identify partial discharge defects in cast-resin power transformers using a back-propagation algorithm. The Rogowski-type partial discharge (PD) sensor was designed with a planar and thin structure based on a printed circuit board to detect PD signals. PD electrode systems, such as metal protrusions, particle-on-insulators, delamination, and void defects, were fabricated to simulate the PD defects that occur in service. PD characteristics, such as rising time, falling time, pulse width, skewness, and kurtosis without phase-resolved partial discharge patterns, were extracted to intuitively analyze each PD pulse according to the type of PD defect. A backpropagation algorithm was designed to identify PD defects using a virtual instrument (VI) based on the LabVIEW program. The results show that the accuracy rate of back-propagation (BP) algorithm reaches over 92.75% in identifying four types of PD defects.

Self-diagnostic system for smartphone addiction using multiclass SVM (다중 클래스 SVM을 이용한 스마트폰 중독 자가진단 시스템)

  • Pi, Su Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.1
    • /
    • pp.13-22
    • /
    • 2013
  • Smartphone addiction has become more serious than internet addiction since people can download and run numerous applications with smartphones even without internet connection. However, smartphone addiction is not sufficiently dealt with in current studies. The S-scale method developed by Korea National Information Society Agency involves so many questions that respondents are likely to avoid the diagnosis itself. Moreover, since S-scale is determined by the total score of responded items without taking into account of demographic variables, it is difficult to get an accurate result. Therefore, in this paper, we have extracted important factors from all data, which affect smartphone addiction, including demographic variables. Then we classified the selected items with a neural network. The result of a comparative analysis with backpropagation learning algorithm and multiclass support vector machine shows that learning rate is slightly higher in multiclass SVM. Since multiclass SVM suggested in this paper is highly adaptable to rapid changes of data, we expect that it will lead to a more accurate self-diagnosis of smartphone addiction.

Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)

  • Shariati, Mahdi;Mafipour, Mohammad Saeed;Mehrabi, Peyman;Ahmadi, Masoud;Wakil, Karzan;Trung, Nguyen Thoi;Toghroli, Ali
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.183-195
    • /
    • 2020
  • Mineral admixtures have been widely used to produce concrete. Pozzolans have been utilized as partially replacement for Portland cement or blended cement in concrete based on the materials' properties and the concrete's desired effects. Several environmental problems associated with producing cement have led to partial replacement of cement with other pozzolans. Furnace slag and fly ash are two of the pozzolans which can be appropriately used as partial replacements for cement in concrete. However, replacing cement with these materials results in significant changes in the mechanical properties of concrete, more specifically, compressive strength. This paper aims to intelligently predict the compressive strength of concretes incorporating furnace slag and fly ash as partial replacements for cement. For this purpose, a database containing 1030 data sets with nine inputs (concrete mix design and age of concrete) and one output (the compressive strength) was collected. Instead of absolute values of inputs, their proportions were used. A hybrid artificial neural network-genetic algorithm (ANN-GA) was employed as a novel approach to conducting the study. The performance of the ANN-GA model is evaluated by another artificial neural network (ANN), which was developed and tuned via a conventional backpropagation (BP) algorithm. Results showed that not only an ANN-GA model can be developed and appropriately used for the compressive strength prediction of concrete but also it can lead to superior results in comparison with an ANN-BP model.

Development of Identification Method of Rice Varieties Using Image Processing Technique (화상처리법에 의한 쌀 품종별 판별기술 개발)

  • Kwon, Young-Kil;Cho, Rae-Kwang
    • Applied Biological Chemistry
    • /
    • v.41 no.2
    • /
    • pp.160-165
    • /
    • 1998
  • Current discriminating technique of rice variety is known to be not objective till this time because of depending on naked eye of well trained inspector. DNA finger print method based on genetic character of rice has been indicated inappropriate for on-site application, because the method need much labor and skilled expert. The purpose of this study was to develops the identification technique of polished rice varieties using CCD camera images. To minimize the noise of the captured image, thresholding and median filtering were carried out, and edge was extracted from the image data. Image data after pretreatment of normalize and FFT(fast fourier transform) were used for library model and feedforward backpropagation neural network model. Image processing technique using CCD camera could discriminate the variety of rice with high accuracy in case of quite different rice of shape, but the accuracy was reached at 85% in the similar shape of rice.

  • PDF

Text-Independent Speaker Identification System Based On Vowel And Incremental Learning Neural Networks

  • Heo, Kwang-Seung;Lee, Dong-Wook;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1042-1045
    • /
    • 2003
  • In this paper, we propose the speaker identification system that uses vowel that has speaker's characteristic. System is divided to speech feature extraction part and speaker identification part. Speech feature extraction part extracts speaker's feature. Voiced speech has the characteristic that divides speakers. For vowel extraction, formants are used in voiced speech through frequency analysis. Vowel-a that different formants is extracted in text. Pitch, formant, intensity, log area ratio, LP coefficients, cepstral coefficients are used by method to draw characteristic. The cpestral coefficients that show the best performance in speaker identification among several methods are used. Speaker identification part distinguishes speaker using Neural Network. 12 order cepstral coefficients are used learning input data. Neural Network's structure is MLP and learning algorithm is BP (Backpropagation). Hidden nodes and output nodes are incremented. The nodes in the incremental learning neural network are interconnected via weighted links and each node in a layer is generally connected to each node in the succeeding layer leaving the output node to provide output for the network. Though the vowel extract and incremental learning, the proposed system uses low learning data and reduces learning time and improves identification rate.

  • PDF

A study on the control chart pattern for detecting shifts using neural network in start-up process (초기공정에서 공정변화에 대한 신경망을 이용한 관리도 형태 연구)

  • 이희춘
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.3
    • /
    • pp.65-70
    • /
    • 2001
  • This Paper Propose the control chart Pattern to provide a more comprehensive scheme for detecting process shifts using individual observations in start-up process. In this paper, which uses the backpropagation algorithm two samples are fed into the trained neural network to provide outputs ranging from 0 to 1. The main advantage of using neural networks approach with a control chart is that the neural network has almost no delay in detecting small shift. This paper illustrates how neural networks can provide a useful method for optimizing parameter(connection weights) that affect process control. Simulation results show that the performance of the proposed control chart using the neural network (NNCC) is quite promising.

  • PDF