• Title/Summary/Keyword: backhaul network

Search Result 59, Processing Time 0.027 seconds

Implementation of Radio Access Network for Mobile Backhaul Network (이동 백홀 네트워크용 Radio Access Network 구현)

  • Park, Chun-Kwan;Song, Han-Young;Jeon, Byung-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.77-84
    • /
    • 2010
  • This paper aims to implement RAN(Radio Access Network) transmission system that can reduce the transmission cost by installing between mobile base station and base station controller. This system can reduce the number of transmission links by sharing the transmission link that the mobile communication stations of various generation use separately. This also can classify the traffics non-sensitive to delay time, and then transfer them through Ethernet/IP network.

Femto-Caching File Placement Technique for Overlapped Helper Coverage Without User Location Information (사용자 위치정보를 사용하지 않는 헬퍼 간 중첩 커버리지 영역을 위한 펨토-캐싱 파일 분배 기술)

  • Shim, Jae-Nam;Min, Byoung-Yoon;Kim, Dong Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.11
    • /
    • pp.682-689
    • /
    • 2014
  • Due to explosive growth of mobile data traffic, many kind of techniques based on small cell is proposed as solution for phenomenon. However, those techniques essentially demands increase of backhaul capacity and causes performance degradation if not satisfied. Based on that, the approach applying the storage capacity in place of backhaul capacity, which is known as femto-caching, is proposed to reduce data downloading delay of users in system. In this paper, we expanded previous research by proposing file placement strategy with distribution of user position, which is more practical scenario. Simulation results verify that our proposed scheme has better performance gains mainly because when coverage of helpers are overlapped, users get more opportunity to connect various helpers which enables users to download a variety kind of files from helpers, not base station.

Radio Resource Management of CoMP System in HetNet under Power and Backhaul Constraints

  • Yu, Jia;Wu, Shaohua;Lin, Xiaodong;Zhang, Qinyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3876-3895
    • /
    • 2014
  • Recently, Heterogeneous Network (HetNet) with Coordinated Multi-Point (CoMP) scheme is introduced into Long Term Evolution-Advanced (LTE-A) systems to improve digital services for User Equipments (UEs), especially for cell-edge UEs. However, Radio Resource Management (RRM), including Resource Block (RB) scheduling and Power Allocation (PA), in this scenario becomes challenging, due to the intercell cooperation. In this paper, we investigate the RRM problem for downlink transmission of HetNet system with Joint Processing (JP) CoMP (both joint transmission and dynamic cell selection schemes), aiming at maximizing weighted sum data rate under the constraints of both transmission power and backhaul capacity. First, joint RB scheduling and PA problem is formulated as a constrained Mixed Integer Programming (MIP) which is NP-hard. To simplify the formulation problem, we decompose it into two problems of RB scheduling and PA. For RB scheduling, we propose an algorithm with less computational complexity to achieve a suboptimal solution. Then, according to the obtained scheduling results, we present an iterative Karush-Kuhn-Tucker (KKT) method to solve the PA problem. Extensive simulations are conducted to verify the effectiveness and efficiency of the proposed algorithms. Two kinds of JP CoMP schemes are compared with a non-CoMP greedy scheme (max capacity scheme). Simulation results prove that the CoMP schemes with the proposed RRM algorithms dramatically enhance data rate of cell-edge UEs, thereby improving UEs' fairness of data rate. Also, it is shown that the proposed PA algorithms can decrease power consumption of transmission antennas without loss of transmission performance.

CAMR: Congestion-Aware Multi-Path Routing Protocol for Wireless Mesh Networks

  • Jang, Seowoo;Kang, Seok-Gu;Yoon, Sung-Guk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.411-419
    • /
    • 2017
  • The Wireless Mesh Network (WMN) is a multi-hop wireless network consisting of mesh routers and clients, where the mesh routers have minimal mobility and form the backbone. The WMN is primarily designed to access outer network to mesh clients through backhaul gateways. As traffic converges on the gateways, traffic hotspots are likely to form in the neighborhood of the gateways. In this paper, we propose Congestion Aware Multi-path Routing (CAMR) protocol to tackle this problem. Upon congestion, CAMR divides the clients under a mesh STA into two groups and returns a different path for each group. The CAMR protocol triggers multi-path routing in such a manner that the packet reordering problem is avoided. Through simulations, we show that CAMR improves the performance of the WMN in terms of throughput, delay and packet drop ratio.

A Priority Time Scheduling Method for Avoiding Gateway Bottleneck in Wireless Mesh Networks (무선 메쉬 네트워크에서 게이트웨이 병목 회피를 위한 우선순위 타임 스케줄링 기법)

  • Ryu, Min Woo;Kim, Dae Young;Cha, Si Ho;Cho, Kuk Hyun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • In existing wireless ad-hoc networks, how to distribute network resources fairly between many users to optimize data transmission is an important research subject. However, in wireless mesh networks (WMNs), it is one of the research areas to avoid gateway bottleneck more than the fair network resource sharing. It is because WMN traffic are concentrated on the gateway connected to backhaul. To solve this problem, the paper proposes Weighted Fairness Time-sharing Access (WFTA). The proposed WFTA is a priority time scheduling scheme based on Weighted Fair Queuing (WFQ).

WiFi Access User Authentication in Broadband Wireless Access Network (광대역 무선 엑세스 망에서 WiFi 액세스 사용자 인증)

  • Lee, Yong;Lee, Goo-Yeon
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.33-37
    • /
    • 2008
  • Recently, there have been intensive researches on the wireless Internet access through WiFi WLAN using WiRro network as backhaul link in the Internet service providing business area. However, in the wireless Internet access method, we need to solve the compatibility problem for different user authentications between licensed WiBro network and unlicensed WiFi network for billing and user management. In this paper, we propose an authentication method for WiFi users by BWAN operators through WiNNERs which is RS connecting the two networks, and discuss the effectiveness of the method.

  • PDF

Introducing the Latest 3GPP Specifications and their Potential for Future AMI Applications

  • Koumadi, Koudjo M.;Park, Byong-seok;Myoung, Nogil
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.245-251
    • /
    • 2016
  • Despite the exponential throughput improvement in mobile communications systems, their ability to satisfy requirements of state-of-the-art and future applications of advanced metering infrastructure (AMI) is still under investigation. Challenges are mainly due to the inadequacy of third generation partnership project (3GPP) networks to support large amounts of devices simultaneously, while the number of AMI end-devices and the frequency of their data transmission increase with new AMI-based applications. In this introductory survey, innovative and future AMI applications and their communication requirements are first reviewed. Then, we identify challenges of 3GPP long term evolution (LTE) in enabling future AMI applications. More importantly, the latest improvements to LTE-A standard release 12 and 13 are reviewed and analyzed with regards to their potential to improve the quality of LTE-enabled AMI. It is found that 3GPP enhancements on machine type communications (MTC) standards will significantly enhance AMI communications. Beyond MTC specifications, non-MTC-specific enhancements such as carrier aggregation and multi-connectivity for user equipment will also contribute greatly to improving reliability and availability of AMI devices. The paper's focus is towards improved backhaul support for innovative and future AMI applications, beyond traditional automatic meter reading.

Trends of Public Wi-Fi Technologies (공공 와이파이 기술 동향)

  • Chung, H.S.;Kim, J.H.;Noh, G.S.;Park, J.H.;Lee, J.H.;Lee, J.H.;Kim, I.G.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.5
    • /
    • pp.64-75
    • /
    • 2018
  • People usually check their social media, e-mail, and online news on their smartphones using their carrier network. During this process, much of the data traffic is offloaded to ubiquitous Wi-Fi networks. Such offloading will continue to increase rapidly because of flourishing public Wi-Fi networks located around the world. In this technical report, we first investigate domestic public Wi-Fi projects, and followed by foreign projects. In addition, we investigate the Wi-Fi technology evolution that has been standardized in IEEE 802. More and more people are tending to use Wi-Fi, not only at home or work, but also on public transport such as buses and trains. Hence, it is important to come up with ideas that can realize Wi-Fi onboard. The key technologies needed here are related to a mobile wireless backhaul between trains and trackside radio equipment, or between buses and roadside units. Thus, we also investigate the mobile wireless backhaul technologies and their trends.

Cloud Radio Access Network: Virtualizing Wireless Access for Dense Heterogeneous Systems

  • Simeone, Osvaldo;Maeder, Andreas;Peng, Mugen;Sahin, Onur;Yu, Wei
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.135-149
    • /
    • 2016
  • Cloud radio access network (C-RAN) refers to the virtualization of base station functionalities by means of cloud computing. This results in a novel cellular architecture in which low-cost wireless access points, known as radio units or remote radio heads, are centrally managed by a reconfigurable centralized "cloud", or central, unit. C-RAN allows operators to reduce the capital and operating expenses needed to deploy and maintain dense heterogeneous networks. This critical advantage, along with spectral efficiency, statistical multiplexing and load balancing gains, make C-RAN well positioned to be one of the key technologies in the development of 5G systems. In this paper, a succinct overview is presented regarding the state of the art on the research on C-RAN with emphasis on fronthaul compression, baseband processing, medium access control, resource allocation, system-level considerations and standardization efforts.

Design and Performance Analysis of Hybrid Receiver based on System Level Simulation in Backhaul System (백홀 시스템에서 시스템 레벨 시뮬레이션 기반 하이브리드 수신기 설계 및 성능 분석)

  • Moon, Sangmi;Choe, Hun;Chu, Myeonghun;Kim, Hanjong;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.23-32
    • /
    • 2015
  • The advanced receiver which can manage inter-cell interference is required to cope with the explosively increasing mobile data traffic. 3rd Generation Partnership Project (3GPP) has discussed network assisted interference cancellation and suppression (NAICS) to improve signal-to-noise-plus-interference ratio (SINR) and receiver performance by suppression or cancellation of interference signal from inter-cells. In this paper, we propose the novel hybrid receiver Full Suppression Cancellation (FSC) to reduce the interference from neighbor cell in backhaul system. The proposed receiver can suppress and cancel the interference by combining Interference Rejection Combining (IRC) with Successive Interference Cancellation (SIC). We perform the system level simulation based on 20MHz bandwidth of 3GPP LTE-Advanced system. Simulation results show that the proposed receiver can improve error rate and throughput of conventional system.