• Title/Summary/Keyword: background surface

Search Result 1,094, Processing Time 0.024 seconds

Implementation of the Ensemble Kalman Filter to a Double Gyre Ocean and Sensitivity Test using Twin Experiments (Double Gyre 모형 해양에서 앙상블 칼만필터를 이용한 자료동화와 쌍둥이 실험들을 통한 민감도 시험)

  • Kim, Young-Ho;Lyu, Sang-Jin;Choi, Byoung-Ju;Cho, Yang-Ki;Kim, Young-Gyu
    • Ocean and Polar Research
    • /
    • v.30 no.2
    • /
    • pp.129-140
    • /
    • 2008
  • As a preliminary effort to establish a data assimilative ocean forecasting system, we reviewed the theory of the Ensemble Kamlan Filter (EnKF) and developed practical techniques to apply the EnKF algorithm in a real ocean circulation modeling system. To verify the performance of the developed EnKF algorithm, a wind-driven double gyre was established in a rectangular ocean using the Regional Ocean Modeling System (ROMS) and the EnKF algorithm was implemented. In the ideal ocean, sea surface temperature and sea surface height were assimilated. The results showed that the multivariate background error covariance is useful in the EnKF system. We also tested the sensitivity of the EnKF algorithm to the localization and inflation of the background error covariance and the number of ensemble members. In the sensitivity tests, the ensemble spread as well as the root-mean square (RMS) error of the ensemble mean was assessed. The EnKF produces the optimal solution as the ensemble spread approaches the RMS error of the ensemble mean because the ensembles are well distributed so that they may include the true state. The localization and inflation of the background error covariance increased the ensemble spread while building up well-distributed ensembles. Without the localization of the background error covariance, the ensemble spread tended to decrease continuously over time. In addition, the ensemble spread is proportional to the number of ensemble members. However, it is difficult to increase the ensemble members because of the computational cost.

Study on the Periodic Flows in a Rectangular Container Under a Background Rotation

  • Suh, Yong-Kweon;Park, Jae-Hyun;Kim, Sung-Kyun;Son, Young-Rak
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.671-680
    • /
    • 2004
  • We present numerical and experimental results of the periodic flows inside a rectangular container under a background rotation. In numerical computation, a parallel-computation technique with MPI is implemented. Flow visualization and PIV measurement are also performed to obtain velocity fields at the free surface. Through a series of numerical and experimental works, we aim to clarify the fundamental reasons of discrepancy between the two-dimensional computation and the experimental measurement, which was detected in the previous study for the same flow model. Specifically, we check if the various assumptions prerequisite for the validity of the classical Ekman pumping law are satisfied for periodic flows under a background rotation.

Study on the Periodic Flows in a Rectangular Container under a Background Rotation (직사각형 용기내의 주기유동에 관한 연구)

  • Park Jae Hyun;Suh Yong Kweon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.325-328
    • /
    • 2002
  • We present numerical and experimental result of the rotating flows inside a rectangular container under a background rotation. In numerical computation, a parallel-computation technique with MPI is implemented. Flow visualization and PIV measurement are also performed to obtain velocity fields at the free surface. Through a series of numerical and experimental works, we aim to clarify, if any, the fundamental reasons of discrepancy between the two-dimensional computation and the experimental measurement, which was detected in the previous study for the same flow model. Specifically, we check if the various assumptions prerequisite for the validity of the classical Ekman pumping law are satisfied for periodic flows under a background rotation.

  • PDF

Three-Dimensional Numerical Computation and Experiment on Periodic Flows under a Background Rotation (배경회전하에서 형성되는 주기적 유동의 3차원 수치해석과 실험)

  • Suh, Yong-Kweon;Park, Jae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.628-634
    • /
    • 2003
  • We present numerical and experimental results of periodic flows inside a rectangular container under a background rotation. The periodic flows are generated by changing the speed of rotation periodically so that a time-periodic body forces produce the unsteady flows. In numerical computation, a parallel-computation technique with MPI is implemented. Flow visualization and PIV measurement are also performed to obtain velocity fields at the free surface. Through a series of numerical and experimental works, we aim to clarify, if any, the fundamental reasons \ulcornerf discrepancy between the two-dimensional computation and the experimental measurement, which was detected in the previous study for the same flow model. Specifically, we check if the various assumptions prerequisite for the validity of the classical Ekman pumping law are satisfied for periodic flows under a background rotation.

EXPERIMENTAL STUDY ON MEASUREMENT OF EMISSIVITY FOR ANALYSIS OF SNU-RCCS

  • CHO YUN-JE;KIM MOON OH;PARK GOON-CHERL
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.99-108
    • /
    • 2006
  • SNU-RCCS is a water pool type RCCS (Reactor Cavity Cooling System) developed for VHTR (Very High Temperature Reactor) application by SNU (Seoul National University). Since radiation heat transfer is the major process of passive heat removal in a RCCS, it is important to determine the precise emissivity of the reactor vessel. Review studies have used a constant emissivity in the passive heat removal analysis, even though the emissivity depends on many factors such as temperature, surface roughness, oxidation level, wavelength, direction, atmosphere conditions, etc. Therefore, information on the emissivity of a given material in a real RCCS is essential in order to properly analyze the radiation heat transfer in a VHTR. The objectives of this study are to develop a method for compensation of the factors affecting the emissivity measurement using an infrared thermometer and to estimate the true emissivity from the measured emissivity via the developed method, especially in the SNU-RCCS environment. From this viewpoint, we investigated factors such as the attenuation effect of the window, filling gas, and the effect of background radiation on the emissivity measurements. The emissivity of the vessel surface of the SNU-RCCS facility was then measured using a sight tube. The background radiation was subsequently removed from the measured emissivity by solving a simultaneous equation. Finally, the calculated emissivity was compared with the measured emissivity in a separate emissivity measurement device, yielding good agreement with the emissivity increase with vessel temperature in a range of 0.82 to 0.88.

The Effects of Lower Muscle Activity of Squat Exercise on Supporting Surface and Visual Feedback (지지면과 시각적 피드백의 차이에 따른 스쿼트 운동시 일부 하지 근 활성도에 미치는 영향)

  • Lee, Jin;Bang, Hyun-Soo
    • Journal of Korean Physical Therapy Science
    • /
    • v.25 no.1
    • /
    • pp.20-30
    • /
    • 2018
  • Background: This study evaluates the effects of lower muscle activity of squat exercise on supporting surface and visual feedback. Methods: The subjects include 30 healthy subjects. To measure muscle activation of the lower limb during squat exercise(stable and unstable surface, visual and unvisual). For evaluation of muscle activation(rectus femoris, biceps femoris), was measured using the Electromyogram, EMG was used. Results: The results shows that Rectus Femoris(RF) and Biceps Femoris(BF) muscle activations were significantly (p<0.05) difference in unvisual-unstable surface(USUV), unvisual-stable surface(SUV), visual-unstable surface(USA), and visual-stable surface(SV) during squat exercise. Conclusion: Squat exercise can improve muscle activation of the lowe limb. particularly, unvisual-unstable surface during squat exercise can improve muscle activation of the lowe limb.

INDUSTRIAL STATUS OF DRY PLATING AS AN ALTERNATIVE TO WET PLATING PROCESS IN KOREAN SURFACE FINISHING INDUSTRY

  • Kwon, Sik-Chol;Baek, Woon-Sung;Lee, Gun-Hwan;Rha, Jong-Joo
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.253-256
    • /
    • 1999
  • Wet plating has been initiated and developed as a major surface finishing technology as of the long customized and highly productive process until now. As the external compression by virtue of the environmental preservation becomes stricter, there has been new move to adapt dry plating line instead of conventional wet plating one in domestic surface finishing industry. Dry plating, so-called, plasma surface technology has been developed in semiconducting industry and becomes a key technology to be useful as an alternative to wet plating in surface finishing industry. The historical progress of domestic surface finishing industry was outlined with the background on the adaptation of three dry plating processes-plasma spraying, plasma nitriding and ion plating. The present status of domestic industrial activity was covered on major alternative to wet plating.

  • PDF

The Development Plan of Salt Contamination Map Using GIS (지리정보 시스템을 이용한 전국 염해 오손도 구축 방안)

  • Kang, Yeon-Woog;Kwak, Joo-Sik;Shim, Eung-Bo;Yoo, Chol-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.377-379
    • /
    • 2001
  • Contamination flashover is responsible for insulator electrical failures. Particularly, in Korea, with its perennially dry spring, the first spring rain often cause serious line outages by forming a conductive liquid film on the insulator surface. Rainwater and fog are not normally conductive but unfortunately atmospheric dust deposited on the insulator surface contains soluble salts which may lead to bad condition of insulation by combining watery and salts. Transmission design engineers have used a contamination map drawn on the traditional paper map. But it is not convenient because it does not include the information of Geographic Information accurately. This paper explains the newly developed salt contamination map program using Geographic Information System, which provide accurate geographic information. The program is designed to use four parts of datum, salt contamination levels, 345kV & 154 kV transmission lines, power plants & substations and background map. The digital background map is composed of raster files, the others are done by vector map.

  • PDF

Studies on Sized Silks for East Asian Painting Background

  • Lee, Boyoung;Ryu, Hyo Seon
    • Journal of Conservation Science
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • This study provides a comprehensive evaluation of general characteristics of sized silk fabrics for the painting purpose. Two particular types of silk fabrics used for painting background were compared: a recreation of historical material and a mass produced material of present day. The sizing process made the surface characteristics of the silk fabrics more suitable for painting. The dyeing properties of the fabrics were related to the surface area of the fabrics, and had no significant effect on their mechanical properties. The antibacterial activity of the tannin-based natural dyestuffs were maintained after the sizing. The performance assessment by the KES-FB system showed that the fabrics are more prone to deteriorate after the sizing because the glue layer receives the most of the physical stresses.

TWO POSSIBLE COSMIC X-RAY SPECTRAL LINES

  • WU XUEJUN;Xu CHONGMING
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.41-42
    • /
    • 1996
  • A possible cosmic X-ray background(XRB) radiation related to original antimatter is considered. If the universe is made of separating domains of antimatter and matter, the photons produced by the annihilation of electron-positron and proton-antiproton on the last scattering surface would reach us in the energy $\~$0.45 keV and $\~$60 keV respectively because of the redshift. The spectrums of X-ray radiation from annihilation are deduced and a possible observational figure is described also.

  • PDF