• Title/Summary/Keyword: back-propagation

Search Result 1,469, Processing Time 0.025 seconds

Effect of Electrical Resistance Welding on Microstructure and Mechanical Properties of API X70 Linepipe Steel (ERW 용접 전후 API X70 라인파이프강의 미세조직과 기계적 특성 변화)

  • Oh, Dong-Kyu;Choi, Ye-Won;Shin, Seung-Hyeok;Jeong, Han-Gil;Kwack, Jin-Sub;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.4
    • /
    • pp.185-192
    • /
    • 2022
  • Variations in the microstructure and mechanical properties of API X70 steel processed by piping, electrical resistance welding (ERW), and post seam annealing (PSA) are investigated in this study. In the welding zone, some elongated pearlites are formed and grains coarsening occurs due to extra heat caused by the ERW and PSA processes. After the piping, the base metal shows continuous yielding behavior and a decrease in yield and impact strengths because mobile dislocation and back stress are introduced during the piping process. On the other hand, the ERW and PSA processes additionally decreased the impact strength of welding zone at room and low temperatures because some elongated pearlites easily act as crack initiation site and coarse ferrite grains facilitate crack propagation. As a result, the fracture surface of the welding zone specimen tested at low temperature revealed mostly cleavage fracture unlike the base metal specimen.

Improvement of Electroforming Process System Based on Double Hidden Layer Network (이중 비밀 다층구조 네트워크에 기반한 전기주조 공정 시스템의 개선)

  • Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.61-67
    • /
    • 2023
  • In order to optimize the pulse electroforming copper process, a double hidden layer BP (Back Propagation) neural network is constructed. Through sample training, the mapping relationship between electroforming copper process conditions and target properties is accurately established, and the prediction of microhardness and tensile strength of the electroforming layer in the pulse electroforming copper process is realized. The predicted results are verified by electrodeposition copper test in copper pyrophosphate solution system with pulse power supply. The results show that the microhardness and tensile strength of copper layer predicted by "3-4-3-2" structure double hidden layer neural network are very close to the experimental values, and the relative error is less than 2.32%. In the parameter range, the microhardness of copper layer is between 100.3~205.6MPa and the tensile strength is between 112~485MPa.When the microhardness and tensile strength are optimal,the corresponding process conditions are as follows: current density is 2A-dm-2, pulse frequency is 2KHz and pulse duty cycle is 10%.

Computing machinery techniques for performance prediction of TBM using rock geomechanical data in sedimentary and volcanic formations

  • Hanan Samadi;Arsalan Mahmoodzadeh;Shtwai Alsubai;Abdullah Alqahtani;Abed Alanazi;Ahmed Babeker Elhag
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.223-241
    • /
    • 2024
  • Evaluating the performance of Tunnel Boring Machines (TBMs) stands as a pivotal juncture in the domain of hard rock mechanized tunneling, essential for achieving both a dependable construction timeline and utilization rate. In this investigation, three advanced artificial neural networks namely, gated recurrent unit (GRU), back propagation neural network (BPNN), and simple recurrent neural network (SRNN) were crafted to prognosticate TBM-rate of penetration (ROP). Drawing from a dataset comprising 1125 data points amassed during the construction of the Alborze Service Tunnel, the study commenced. Initially, five geomechanical parameters were scrutinized for their impact on TBM-ROP efficiency. Subsequent statistical analyses narrowed down the effective parameters to three, including uniaxial compressive strength (UCS), peak slope index (PSI), and Brazilian tensile strength (BTS). Among the methodologies employed, GRU emerged as the most robust model, demonstrating exceptional predictive prowess for TBM-ROP with staggering accuracy metrics on the testing subset (R2 = 0.87, NRMSE = 6.76E-04, MAD = 2.85E-05). The proposed models present viable solutions for analogous ground and TBM tunneling scenarios, particularly beneficial in routes predominantly composed of volcanic and sedimentary rock formations. Leveraging forecasted parameters holds the promise of enhancing both machine efficiency and construction safety within TBM tunneling endeavors.

Prediction of rock slope failure using multiple ML algorithms

  • Bowen Liu;Zhenwei Wang;Sabih Hashim Muhodir;Abed Alanazi;Shtwai Alsubai;Abdullah Alqahtani
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.489-509
    • /
    • 2024
  • Slope stability analysis and prediction are of critical importance to geotechnical engineers, given the severe consequences associated with slope failure. This research endeavors to forecast the factor of safety (FOS) for slopes through the implementation of six distinct ML techniques, including back propagation neural networks (BPNN), feed-forward neural networks (FFNN), Takagi-Sugeno fuzzy system (TSF), gene expression programming (GEP), and least-square support vector machine (Ls-SVM). 344 slope cases were analyzed, incorporating a variety of geometric and shear strength parameters measured through the PLAXIS software alongside several loss functions to assess the models' performance. The findings demonstrated that all models produced satisfactory results, with BPNN and GEP models proving to be the most precise, achieving an R2 of 0.86 each and MAE and MAPE rates of 0.00012 and 0.00002 and 0.005 and 0.004, respectively. A Pearson correlation and residuals statistical analysis were carried out to examine the importance of each factor in the prediction, revealing that all considered geomechanical features are significantly relevant to slope stability. However, the parameters of friction angle and slope height were found to be the most and least significant, respectively. In addition, to aid in the FOS computation for engineering challenges, a graphical user interface (GUI) for the ML-based techniques was created.

The Critical Thinking of Philosophy as a Creative Method of Science: Neurophilosophical Explication (창의적 과학방법으로서 철학의 비판적 사고: 신경철학적 해명)

  • Park, Jeyoun
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.1
    • /
    • pp.144-160
    • /
    • 2013
  • This study is a proposal, which is the trial to explicate, in neurology, on how critical thinking as a creative method of sciences functions. The creative methods of sciences, even at present, are mostly the hypothetical insistences concerning with the logical processes of researches suggested from the philosophers of science; Popper, Kuhn, Hempel, or Lakatos. These insistences do excavate what process or approach can be scoped out of scientists' creativity. I call the tendency or approach of the researches, "Process Approach of Creativity (PAC)". From my view point, any PAC trial does not concern with how creative theories can actually be invented. On the other hand, this study is focused on the philosophical thinking abilities of scientists who invented new great theories. They mostly had some experiences to study philosophy while studying their science fields, thus had critical thinking abilities on their studies. From my point of view, critical thinking in philosophy raised questions as to their fundamental and basic (old) concepts and principles, and thus gave them new creative theories. I will try to explain this from the point of neurophilosophy. From the perspectives coming from "the state space theory of representation" of Paul & Patricia Churchland, the pioneers of neurophilosphy, the "creative theories" are the networks of topographic maps giving new comprehensive explanations and predictions. From these perspectives, I presuppose that the attitude of critical questioning revises the old networks of maps with back-propagation or feedback, and thus, is the generative power of searching new networks of maps. From the presupposition, I can say, it is important that scientists reflect on the basic premises in their academic branches for issuing out extraordinary creativity. The critical attitude of philosophy can make scientists construct the maps of new conceptual scheme by shaking the maps of the old basic premises. From this context, I am able to propose "Critical Thinking Approach of Creativity (CTAC)".

Development an Artificial Neural Network to Predict Infectious Bronchitis Virus Infection in Laying Hen Flocks (산란계의 전염성 기관지염을 예측하기 위한 인공신경망 모형의 개발)

  • Pak Son-Il;Kwon Hyuk-Moo
    • Journal of Veterinary Clinics
    • /
    • v.23 no.2
    • /
    • pp.105-110
    • /
    • 2006
  • A three-layer, feed-forward artificial neural network (ANN) with sixteen input neurons, three hidden neurons, and one output neuron was developed to identify the presence of infectious bronchitis (IB) infection as early as possible in laying hen flocks. Retrospective data from flocks that enrolled IB surveillance program between May 2003 and November 2005 were used to build the ANN. Data set of 86 flocks was divided randomly into two sets: 77 cases for training set and 9 cases for testing set. Input factors were 16 epidemiological findings including characteristics of the layer house, management practice, flock size, and the output was either presence or absence of IB. ANN was trained using training set with a back-propagation algorithm and test set was used to determine the network's capability to predict outcomes that it has never seen. Diagnostic performance of the trained network was evaluated by constructing receiver operating characteristic (ROC) curve with the area under the curve (AUC), which were also used to determine the best positivity criterion for the model. Several different ANNs with different structures were created. The best-fitted trained network, IBV_D1, was able to predict IB in 73 cases out of 77 (diagnostic accuracy 94.8%) in the training set. Sensitivity and specificity of the trained neural network was 95.5% (42/44, 95% CI, 84.5-99.4) and 93.9% (31/33, 95% CI, 79.8-99.3), respectively. For testing set, AVC of the ROC curve for the IBV_D1 network was 0.948 (SE=0.086, 95% CI 0.592-0.961) in recognizing IB infection status accurately. At a criterion of 0.7149, the diagnostic accuracy was the highest with a 88.9% with the highest sensitivity of 100%. With this value of sensitivity and specificity together with assumed 44% of IB prevalence, IBV_D1 network showed a PPV of 80% and an NPV of 100%. Based on these findings, the authors conclude that neural network can be successfully applied to the development of a screening model for identifying IB infection in laying hen flocks.

A Study on the Effect of the Document Summarization Technique on the Fake News Detection Model (문서 요약 기법이 가짜 뉴스 탐지 모형에 미치는 영향에 관한 연구)

  • Shim, Jae-Seung;Won, Ha-Ram;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.201-220
    • /
    • 2019
  • Fake news has emerged as a significant issue over the last few years, igniting discussions and research on how to solve this problem. In particular, studies on automated fact-checking and fake news detection using artificial intelligence and text analysis techniques have drawn attention. Fake news detection research entails a form of document classification; thus, document classification techniques have been widely used in this type of research. However, document summarization techniques have been inconspicuous in this field. At the same time, automatic news summarization services have become popular, and a recent study found that the use of news summarized through abstractive summarization has strengthened the predictive performance of fake news detection models. Therefore, the need to study the integration of document summarization technology in the domestic news data environment has become evident. In order to examine the effect of extractive summarization on the fake news detection model, we first summarized news articles through extractive summarization. Second, we created a summarized news-based detection model. Finally, we compared our model with the full-text-based detection model. The study found that BPN(Back Propagation Neural Network) and SVM(Support Vector Machine) did not exhibit a large difference in performance; however, for DT(Decision Tree), the full-text-based model demonstrated a somewhat better performance. In the case of LR(Logistic Regression), our model exhibited the superior performance. Nonetheless, the results did not show a statistically significant difference between our model and the full-text-based model. Therefore, when the summary is applied, at least the core information of the fake news is preserved, and the LR-based model can confirm the possibility of performance improvement. This study features an experimental application of extractive summarization in fake news detection research by employing various machine-learning algorithms. The study's limitations are, essentially, the relatively small amount of data and the lack of comparison between various summarization technologies. Therefore, an in-depth analysis that applies various analytical techniques to a larger data volume would be helpful in the future.

A Prediction of N-value Using Artificial Neural Network (인공신경망을 이용한 N치 예측)

  • Kim, Kwang Myung;Park, Hyoung June;Goo, Tae Hun;Kim, Hyung Chan
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.457-468
    • /
    • 2020
  • Problems arising during pile design works for plant construction, civil and architecture work are mostly come from uncertainty of geotechnical characteristics. In particular, obtaining the N-value measured through the Standard Penetration Test (SPT) is the most important data. However, it is difficult to obtain N-value by drilling investigation throughout the all target area. There are many constraints such as licensing, time, cost, equipment access and residential complaints etc. it is impossible to obtain geotechnical characteristics through drilling investigation within a short bidding period in overseas. The geotechnical characteristics at non-drilling investigation points are usually determined by the engineer's empirical judgment, which can leads to errors in pile design and quantity calculation causing construction delay and cost increase. It would be possible to overcome this problem if N-value could be predicted at the non-drilling investigation points using limited minimum drilling investigation data. This study was conducted to predicted the N-value using an Artificial Neural Network (ANN) which one of the Artificial intelligence (AI) method. An Artificial Neural Network treats a limited amount of geotechnical characteristics as a biological logic process, providing more reliable results for input variables. The purpose of this study is to predict N-value at the non-drilling investigation points through patterns which is studied by multi-layer perceptron and error back-propagation algorithms using the minimum geotechnical data. It has been reviewed the reliability of the values that predicted by AI method compared to the measured values, and we were able to confirm the high reliability as a result. To solving geotechnical uncertainty, we will perform sensitivity analysis of input variables to increase learning effect in next steps and it may need some technical update of program. We hope that our study will be helpful to design works in the future.

An Efficient Block Segmentation and Classification Method for Document Image Analysis Using SGLDM and BP (공간의존행렬과 신경망을 이용한 문서영상의 효과적인 블록분할과 유형분류)

  • Kim, Jung-Su;Lee, Jeong-Hwan;Choe, Heung-Mun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.6
    • /
    • pp.937-946
    • /
    • 1995
  • We proposed and efficient block segmentation and classification method for the document analysis using SGLDM(spatial gray level dependence matrix) and BP (back Propagation) neural network. Seven texture features are extracted directly from the SGLDM of each gray-level block image, and by using the nonlinear classifier of neural network BP, we can classify document blocks into 9 categories. The proposed method classifies the equation block, the table block and the flow chart block, which are mostly composed of the characters, out of the blocks that are conventionally classified as non-character blocks. By applying Sobel operator on the gray-level document image beforebinarization, we can reduce the effect of the background noises, and by using the additional horizontal-vertical smoothing as well as the vertical-horizontal smoothing of images, we can obtain an effective block segmentation that does not lead to the segmentation into small pieces. The result of experiment shows that a document can be segmented and classified into the character blocks of large fonts, small fonts, the character recognigible candidates of tables, flow charts, equations, and the non-character blocks of photos, figures, and graphs.

  • PDF

Developing a Neural-Based Credit Evaluation System with Noisy Data (불량 데이타를 포함한 신경망 신용 평가 시스템의 개발)

  • Kim, Jeong-Won;Choi, Jong-Uk;Choi, Hong-Yun;Chuong, Yoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.2
    • /
    • pp.225-236
    • /
    • 1994
  • Many research result conducted by neural network researchers claimed that the degree of generalization of the neural network system is higher or at least equal to that of statistical methods. However, those successful results could be brought only if the neural network was trained by appropriately sound data, having a little of noisy data and being large enough to control noisy data. Real data used in a lot of fields, especially business fields, were not so sound that the network have frequently failed to obtain satisfactory prediction accuracy, the degree of generalization. Enhancing the degree of generalization with noisy data is discussed in this study. The suggestion, which was obtained through a series of experiments, to enhance the degree of generalization is to remove inconsistent data by checking overlapping and inconsistencies. Furthermore, the previous conclusion by other reports is also confirmed that the learning mechanism of neural network takes average value of two inconsistent data included in training set[2]. The interim results of on-going research project are reported in this paper These are ann architecture of the neural network adopted in this project and the whole idea of developing on-line credit evaluation system,being intergration of the expert(resoning)system and the neural network(learning system.Another definite result is corroborated through this study that quickprop,being agopted as a learing algorithm, also has more speedy learning process than does back propagation even in very noisy environment.

  • PDF