• Title/Summary/Keyword: back-flushing

Search Result 56, Processing Time 0.03 seconds

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Microfiltration and Activated Carbon Adsorption: Effect of Water-back-flushing Time and Period (세라믹 정밀여과 및 활성탄 흡착 혼성공정에 의한 고탁도 원수의 고도정수처리: 물 역세척 시간 및 주기의 영향)

  • Park, Jin-Yong;Lee, Hyuk-Chan
    • Membrane Journal
    • /
    • v.19 no.1
    • /
    • pp.7-18
    • /
    • 2009
  • In this study, we used the hybrid module that was composed of granular activated carbons (GAC) packing between module inside and outside of tubular ceramic microfiltration membrane for advanced drinking water treatment. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, modified solution was prepared with humic acid and kaolin. We were investigated effect of water-back-flushing time (BT) and water-back-flushing period (FT) to minimize membrane fouling and to enhance permeate flux (J) in the hybrid process, and tried to find the optimal operating conditions. As a result, resistance of membrane fouling ($R_f$) was slightly decreased according to increasing BT. Also, the shorter FT was the more effective to reduce $R_f$ and to enhance J because of frequent water-back-flushing. However, the optimal BT and FT conditions were 10 sec and 8 min respectively when operating costs were considered. Then, the optimal conditions derived from our experiments of modified solution were applied to lake water treatment. As a result, average treatment efficiencies of turbidity, $UV_{254}$ absorbance, and $COD_{Mn}$ were very high as 99.11%, 91.40% and 89.34%, respectively, but that of TDS was low as 30.05%.

Hybrid Water Treatment of Tubular Alumina MF and Polypropylene Beads Coated with Photocatalyst: Effect of Nitrogen Back-flushing Period and Time (관형 알루미나 정밀여과와 광촉매 코팅 폴리프로필렌 구의 혼성 수처리: 질소 역세척 주기와 시간의 영향)

  • Park, Jin Yong;Choi, Min Jee;Ma, Jun Gyu
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.226-236
    • /
    • 2013
  • The effect of $N_2$ back-flushing period (FT) and time (BT) was compared with the previous result used PES (polyethersulfone) beads loaded with titanium dioxide photocatalyst in hybrid process of alumina microfiltration and PP (polypropylene) beads coated with photocatalyst in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). The reason of nitrogen back-washing instead of the general air back-washing method is to minimize the possible effect of oxygen included in air on water quality analysis. As decreasing FT, $R_f$ decreased and J and $V_T$ increased. Treatment efficiency of dissolved organic matters (DOM) was 82.0%, which was the higher than 78.0% of the PES beads result. This means that PP beads coated with photocatalyst was the more effective than PES beads loaded with photo-catalyst in the DOM removal. As increasing BT, the final $R_f$ decreased and the final J increased, but $V_T$ was the maximum at BT 15 sec. The average treatment efficiency of turbidity did not have any trend as changing BT. As BT increasing from 6 sec to 30 sec, the treatment efficiency of DOM increased 11.8%, which was a little higher than the result of PES beads.

Permeation Behavior of Semiconductor Rinsing Wastewater Containing Si Particles in Ultrafiltration System -I. Permeation Characteristics of Polysulfone Flat Plate Membrane- (Si 입자를 함유한 반도체 세정폐수의 한외여과 특성[I] -Polysulfone 평판막에 의한 투과분리-)

  • 곽순철;이석기;전재홍;남석태;최호상
    • Membrane Journal
    • /
    • v.8 no.2
    • /
    • pp.102-108
    • /
    • 1998
  • Permeation behavior of the semiconductor rinsing wastewater containing Si particles was examined by ultrafiltration using the polysulfone plate membrane. The permeation flux was gradually decreased with time. It was due to the growth of cake deposited on the membrane surface and the pore plugging by Si particles. Permeation flux of cross flow type was 1.4 times higher than that of the dead end flow type. Nitrogen back flushing which is the removing method of membrane fouling was superior to the water sweeping. With nitrogen back flushing, the decrease of permeation flux due to the fouling was recovered about 85 % to the initial flux in the flat plate membrane system. The rejection rate of Si particles was about 90 % and the size of Si particle in the permeate was about 70 nm.

  • PDF

Nitrogen and Phosphorus Removal in Long Term Pilot Plant Operation Using Submerged Hollow Fiber Membrane and Ferric Chloride (침지형 중공사막과 철염을 이용한 Pilot MBR 공정의 장기운전에 따른 질소, 인 제거 특성)

  • Cheong, Jin-Ho;Heo, Yong-Rok;Im, Jeong-Dae;Lee, Eui-Sin;Park, Myung-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1168-1173
    • /
    • 2005
  • Pilot scale vertical-type membrane bioreactor was operated to examine the effect of $FeCl_3$ injection on the removal of organics, nitrogen and phosphorous, and additionally trans-membrane pressure (TMP) was observed. The membrane type was hollow fiber membrane with pore size of $0.25\;{\mu}m$, and the material was polytetrafluoroethylene (PTFE). The membrane permeate was continuously removed by a pump under a constant flux ($25\;L/m^2/h$). Air back-flushing technique were adopted to reduce fouling. As a result, TMP was increased more slowly than that of the operation without air back-flushing, During long-term operation, approximately 310 days, the injection of $FeCl_3$ was effective not only in removing phosphorous chemically but also in reducing TMP increase. Furthermore, while the average COD and T-N concentration of the effluent without $FeCl_3$ injection was 14.3 mg/L and 6.0 mg/L respectively, that of effluent with $FeCl_3$ was 11.3 mg/L and 6.0 mg/L respectively, which confirmed the effects of $FeCl_3$.

Hybrid Water Treatment of Carbon Ultrafiltration Membrane and Polypropylene Beads Coated with Photocatalyst: Effect of Organic Materials, Photo-oxidation, and Adsorption in Water Back-flushing (탄소 한외여과막 및 광촉매 코팅 폴리프로필렌 구의 혼성 수처리: 물 역세척 시 유기물 및 광산화, 흡착의 영향)

  • Park, Jin Yong;Jung, Chung Ho
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.359-368
    • /
    • 2012
  • For hybrid water treatment of high turbidity water, we used the hybrid module that was composed of photocatalyst packing between tubular membrane outside and module inside. Photocatalyst was PP (polypropylene) bead coated with $TiO_2$ powder by CVD (chemical vapor deposition) process. Water back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling for modified solution was prepared with humic acid and kaolin. Resistance of membrane fouling ($R_f$) decreased as humic acid concentration changed from 10 mg/L to 2 mg/L, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L, which was the same with the previous results. Then, treatment efficiencies of turbidity and humic acid were above 98.9% and 88.7%, respectively. As results of treatment portions of UF, UF + $TiO_2$, and UF + $TiO_2$ + UV processes, turbidity was treated little by photocatalyst adsorption, and photo-oxidation. However, treatment portions of humic acid by adsorption and photo-oxidation were 2.5% and 12.3%, respectively. Compared with the previous results, treatment portions of humic acid by adsorption and photo-oxidation were different depending on membrane material and pore size. As simplified the process, the membrane fouling resistance after 180 minutes' operation ($R_{f,180}$) increased and the final permeate flux decreased a little.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Photocatalyst and Ceramic Microfiltration: Effect of Organic Materials in Water-back-flushing (광촉매 및 세라믹 정밀여과 혼성공정에 의한 고탁도 원수의 고도정수처리: 물 역세척시 유기물의 영향)

  • Park, Jin-Yong;Lee, Gwon-Seop
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.72-83
    • /
    • 2011
  • For advanced drinking water treatment of high turbidity water, we used the hybrid module that was composed of photocatalyst packing between outside of tubular ceramic microfiltration membrane and membrane module inside. Photocatalyst was PP (polypropylene) bead coated $TiO_2$ powder by CVD (chemical vapor deposition) process. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, modified solution was prepared with humic acid and kaolin. Water-back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling. Resistance of membrane fouling ($R_f$) decreased and J increased as concentration of humic acid changed from 10 mg/L to 2 mg/L, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L. Then, treatment efficiencies of turbidity and $UV_{254}$ absorbance were above 98.5% and 85.7%, respectively. As results of treatment portions by membrane filtration, photocatalyst adsorption, and photo-oxidation in MF, MF + $TiO_2$, and MF + $TiO_2$ + UV processes, turbidity was treated little by photocatalyst adsorption, and photo-oxidation. However, treatment portions of humic acid by adsorption and photo-oxidation were above 10.7 and 8.6%, respectively.

Column cleaning, regeneration and storage of silica-based columns (실리카 기반 컬럼의 세척, 재생 및 보관 가이드)

  • Matt James;Mark Fever
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.1.1-1.4
    • /
    • 2024
  • This article provides comprehensive guidance on the maintenance, cleaning, regeneration, and storage of silica-based HPLC (High-Performance Liquid Chromatography) columns. The general considerations emphasize the importance of using in-line filters and guard cartridges to protect columns from blockage and irreversible sample adsorption. While these measures help, contamination by strongly adsorbed sample components can still occur over time, leading to an increase in back pressure, loss of efficiency, and other issues. To maximize column lifetime, especially with UHPLC (Ultra-High Performance Liquid Chromatography) columns, it is advisable to use ultra-pure solvents, freshly prepared aqueous mobile phases, and to filter all samples, standards, and mobile phases. Additionally, an in-line filter system and sample clean-up on dirty samples are recommended. However, in cases of irreversible compound adsorption or column voiding, regeneration may not be possible. The document also provides specific recommendations for column cleaning procedures, including the flushing procedures for various types of columns such as reversed phase, unbonded silica, bonded normal phase, anion exchange, cation exchange, and size exclusion columns for proteins. The flushing procedures involve using specific solvents in a series to clean and regenerate the columns. It is emphasized that the flow rate during flushing should not exceed the specified limit for the particular column, and the last solvent used should be compatible with the mobile phase. Furthermore, the article outlines the storage conditions for silica based HPLC columns, highlighting the impact of storage conditions on the column's lifetime. It is recommended to flush all buffers, salts, and ion-pairing reagents from the column before storage. The storage solvent should ideally match the one used in the initial column test chromatogram provided by the manufacturer, and column end plugs should be fitted to prevent solvent evaporation and drying out of the packing bed.

  • PDF

Advanced Water Treatment by Hybrid Process of Multi-channel Ceramic MF and Photocatalyst: Effect of Organic Materials (광촉매 및 다채널 세라믹 정밀여과 혼성공정에 의한 고탁도 원수의 고도정수처리: 유기물의 영향)

  • Amarsanaa, Bolor;Park, Jin-Yong
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.351-359
    • /
    • 2011
  • For advanced drinking water treatment of high turbidity water, we used the hybrid process that was composed of photocatalyst packing in space of between outside of multi-channel ceramic microfiltration membrane and membrane module inside. Photocatalyst was polypropylene (PP) beads coated $TiO_2$ powder by CVD (chemical vapor deposition) process. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, standard NOM solution was prepared with humic acid and kaolin. Water-back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling. Resistance of membrane fouling ($R_f$) increased and J decreased as concentration of humic acid changed from 2 mg/L to 10 mg/L, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L. Then, treatment efficiency of turbidity and $UV_{254}$ absorbance were above 96.4% and 78.9%, respectively. As results of treatment portions by membrane filtration, photocatalyst adsorption, and photo-oxidation in (MF), (MF + $TiO_2$), (MF + $TiO_2$ + UV) processes, turbidity was treated little by photocatalyst adsorption, and photo-oxidation. However, treatment portions of $UV_{254}$ absorbance by adsorption (MF + $TiO_2$) and photo-oxidation (MF + $TiO_2$ + UV) at humic acid of 4 mg/L and 6 mg/L were above 9.0, 9.5 and 8.1, 10.9%, respectively.