• 제목/요약/키워드: back prediction

검색결과 451건 처리시간 0.019초

아크 용접의 이면비드 예측 비교 (The Back-bead Prediction Comparison of Gas Metal Arc Welding)

  • 이정익;고병갑
    • 한국공작기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.81-87
    • /
    • 2007
  • It is important to investigate the relationship between weld process parameters and weld bead geometry for adaptive arc robot welding. However, it is difficult to predict an exact back-bead owing to gap in process of butt welding. In this paper, the quantitative prediction system to specify the relationship external weld conditions and weld bead geometry was developed to get suitable back-bead in butt welding which is widely applied on industrial field. Multiple regression analysis and artificial neural network were used as the research methods. And, the results of two prediction methods were compared and analyzed.

The Geometry Prediction of Back-bead in Arc Welding

  • 이정익;고병갑
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.84-89
    • /
    • 2007
  • This research was done on the basis of assumption that there is a relationship between welding parameters and geometry of the back-bead being a gap in arc welding. Multiple regression analysis was used as method for predicting the geometry of the back-bead. The analysis data and the verification data were used for the formation of multiple regression analysis. The method was used to perform the prediction of the back-bead.

인공신경망을 이용한 이면비드 예측 및 용접성 평가 (Back-bead Prediction and Weldability Estimation Using An Artificial Neural Network)

  • 이정익;고병갑
    • 한국공작기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.79-86
    • /
    • 2007
  • The shape of excessive penetration mainly depends on welding conditions(welding current and welding voltage), and welding process(groove gap and welding speed). These conditions are the major affecting factors to width and height of back bead. In this paper, back-bead prediction and weldability estimation using artificial neural network were investigated. Results are as follows. 1) If groove gap, welding current, welding voltage and welding speed will be previously determined as a welding condition, width and height of back bead can be predicted by artificial neural network system without experimental measurement. 2) From the result applied to three weld quality levels(ISO 5817), both experimented measurement using vision sensor and predicted mean values by artificial neural network showed good agreement. 3) The width and height of back bead are proportional to groove gap, welding current and welding voltage, but welding speed. is not.

DSC구성방정식을 이용한 포화사질토의 액상화 거동 예측 (A Study on Prediction of the Liquefaction Behavior of Saturated Sandy Soils Using DSC Constitutive Equation)

  • 박인준;김수일;정철민
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.201-208
    • /
    • 2000
  • In this study, the behavior of saturated sandy soils under dynamic loads - pore water pressure and effective stress - was investigated using Disturbed State Concept(DSC) model. The model parameters are evaluated from laboratory test data. During the process of loading and reverse loading, DSC model is utilized to trace strain-hardening and cyclic softening behavior. The procedure of back prediction proposed in this study are verified by comparing with laboratory test results. From the back prediction of pore water pressure and effective mean pressure under cyclic loading, excess pore water pressure increases up to initial effective confining pressure and effective mean pressure decrease close to zero in good greement with laboratory test results. Those results represent the liquefaction of saturated sandy soils under dynamic loads. The number of cycles at initial liquefaction using the model prediction is in good agreement with laboratory test results. Therefore, the results of this study state that the liquefaction of saturated sandy soils can be explained by the effective tress analysis.

  • PDF

시중 즉석 조리 면의 Back Extrusion 텍스처 데이터에 대한 Partial Least Square Regression 분석 (Analysis of Partial Least Square Regression on Textural Data from Back Extrusion Test for Commercial Instant Noodles)

  • 김수경;이승주
    • 산업식품공학
    • /
    • 제14권1호
    • /
    • pp.75-79
    • /
    • 2010
  • 시중 즉석 면류의 관능적 성질과 back extrusion test 데이터에 대하여 partial least square regression(PLSR)을 실시하였다. 즉석유탕면 8종과 즉석비유탕면 2종에 대한 관능적 속성으로서 경도(A), 탄성(B), 껄끄러운 정도(C), 이에 박히는 정도(D), 굵기감(E)를 검사하였고, 실험 데이터로 힘-변형 곡선 전체를 사용하였다. PLSR의 회귀계수는 힘-변형곡선의 압착단계, 항복단계, 압출단계로 크게 구분되어 각관능속성에 대한 특유의 양 또는 음의 효과를 나타냈다. PLSR의 상관계수는 E>D>A>B>C, 오차(root mean square error of prediction expressed in sensory units)는 D>C>E>B>A, 예측능(relative ability of prediction)는 D>C>E>B>A 로 나타나 종합적으로 '이에 박히는 정도'가 PLSR의 적용에 가장 우수하게 나타났다. '경도'는 예측능은 낮았지만 상관성은 높아서 시료간 순위의 결정에 합당하게 평가되었다.

아크로봇 용접 공정변수 예측시스템에 다중회귀 분석법의 사용 (Usage of Multiple Regression Analysis in Prediction System of Process Parameters for Arc Robot Welding)

  • 이정익
    • 한국산학기술학회논문지
    • /
    • 제9권4호
    • /
    • pp.871-877
    • /
    • 2008
  • Adaptive 아크 로봇 용접을 위한 용접 공정 변수와 용접 부 형상 사이에 상관관계를 조사하는 것은 중요한 일이다. 하지만 맞대기 용접의 공정에 있어 갭으로 인해 정확한 이면비드를 예측하는 것은 어려운 일이다. 본 연구에서는, 먼저 맞대기 용접을 통해 외부 용접 조건과 용접 비드 형상사이 상관관계가 규명되었고, 이를 응용하여 적절한 이면비드를 얻기 위한 개발이 이루어졌고, 이 연구결과는 산업 전 분야에 폭넓게 사용될 수도 있다. 다중회귀분석법이 공정변수 예측을 위한 연구방법으로 적용되었다. 예측방법의 결과들 또한 비교 및 분석이 이루어졌다.

GMA를 이용한 배관용접의 이면비드 형상예측에 관한 실험적 연구 (An Experimental study on Prediction of Back-bead Geometry in Pipeline Using the GMA Welding Process)

  • 김지선;김일수;나현호;이지혜
    • 한국생산제조학회지
    • /
    • 제20권1호
    • /
    • pp.74-80
    • /
    • 2011
  • In this study, a variety of welding experiments were carried out to optimize root-pass welding process using GMA process. Based on the experimental results, optimal welding conditions were selected after analyzing correlation between welding parameters and back-bead geometry. Then, effectiveness of empirical models developed was compared and analyzed, and optimized empirical models were finally developed for predicting back-bead by analyzing the main effect of each factor which affects back-bead geometry and their influence on interaction. Also, functions proper for expressing the surface of back-bead were selected using diverse quadratic functions, and back-bead geometry was visualized using empirical models developed and quadratic functions.

Optimization of spring back in U-die bending process of sheet metal using ANN and ICA

  • Azqandi, Mojtaba Sheikhi;Nooredin, Navid;Ghoddosian, Ali
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.447-452
    • /
    • 2018
  • The controlling and prediction of spring back is one of the most important factors in sheet metal forming processes which require high dimensional precision. The relationship between effective parameters and spring back phenomenon is highly nonlinear and complicated. Moreover, the objective function is implicit with regard to the design variables. In this paper, first the influence of some effective factors on spring back in U-die bending process was studied through some experiments and then regarding the robustness of artificial neural network (ANN) approach in predicting objectives in mentioned kind of problems, ANN was used to estimate a prediction model of spring back. Eventually, the spring back angle was optimized using the Imperialist Competitive Algorithm (ICA). The results showed that the employment of ANN provides us with less complicated and time-consuming analytical calculations as well as good results with reasonable accuracy.

Prediction of Peak Back Compressive Forces as a Function of Lifting Speed and Compressive Forces at Lift Origin and Destination - A Pilot Study

  • Greenland, Kasey O.;Merryweather, Andrew S.;Bloswick, Donald S.
    • Safety and Health at Work
    • /
    • 제2권3호
    • /
    • pp.236-242
    • /
    • 2011
  • Objectives: To determine the feasibility of predicting static and dynamic peak back-compressive forces based on (1) static back compressive force values at the lift origin and destination and (2) lifting speed. Methods: Ten male subjects performed symmetric mid-sagittal floor-to-shoulder, floor-to-waist, and waist-to-shoulder lifts at three different speeds (slow, medium, and fast), and with two different loads (light and heavy). Two-dimensional kinematics and kinetics were captured. Linear regression analyses were used to develop prediction equations, the amount of predictability, and significance for static and dynamic peak back-compressive forces based on a static origin and destination average (SODA) backcompressive force. Results: Static and dynamic peak back-compressive forces were highly predicted by the SODA, with R2 values ranging from 0.830 to 0.947. Slopes were significantly different between slow and fast lifting speeds (p < 0.05) for the dynamic peak prediction equations. The slope of the regression line for static prediction was significantly greater than one with a significant positive intercept value. Conclusion: SODA under-predict both static and dynamic peak back-compressive force values. Peak values are highly predictable and could be readily determined using back-compressive force assessments at the origin and destination of a lifting task. This could be valuable for enhancing job design and analysis in the workplace and for large-scale studies where a full analysis of each lifting task is not feasible.

Prediction of the long-term deformation of high rockfill geostructures using a hybrid back-analysis method

  • Ming Xu;Dehai Jin
    • Geomechanics and Engineering
    • /
    • 제36권1호
    • /
    • pp.83-97
    • /
    • 2024
  • It is important to make reasonable prediction about the long-term deformation of high rockfill geostructures. However, the deformation is usually underestimated using the rockfill parameters obtained from laboratory tests due to different size effects, which make it necessary to identify parameters from in-situ monitoring data. This paper proposes a novel hybrid back-analysis method with a modified objective function defined for the time-dependent back-analysis problem. The method consists of two stages. In the first stage, an improved weighted average method is proposed to quickly narrow the search region; while in the second stage, an adaptive response surface method is proposed to iteratively search for the satisfactory solution, with a technique that can adaptively consider the translation, contraction or expansion of the exploration region. The accuracy and computational efficiency of the proposed hybrid back-analysis method is demonstrated by back-analyzing the long-term deformation of two high embankments constructed for airport runways, with the rockfills being modeled by a rheological model considering the influence of stress states on the creep behavior.