• Title/Summary/Keyword: b-metric

Search Result 374, Processing Time 0.026 seconds

ON THE CLASS OF COMPLEX DOUGLAS-KROPINA SPACES

  • Aldea, Nicoleta;Munteanu, Gheorghe
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.251-266
    • /
    • 2018
  • In this paper, considering the class of complex Kropina metrics we obtain the necessary and sufficient conditions that these are generalized Berwald and complex Douglas metrics, respectively. Special attention is devoted to a class of complex Douglas-Kropina spaces, in complex dimension 2. Also, some examples of complex Douglas-Kropina metrics are pointed out. Finally, the complex Douglas-Kropina metrics are characterized through the theory of projectively related complex Finsler metrics.

FIXED POINT THEOREMS IN MENGER SPACES USING AN IMPLICIT RELATION

  • Chauhan, Sunny;Khan, M. Alamgir;Pant, B.D.
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.551-564
    • /
    • 2013
  • In 2008, Al-Thaga and Shahzad [Generalized I-nonexpansive selfmaps and invariant approximations, Acta Math. Sinica, 24(5) (2008), 867-876] introduced the notion of occasionally weakly compatible mappings in metric spaces. In this paper, we prove some common fixed point theorems for families of occasionally weakly compatible mappings in Menger spaces using an implicit relation. We also give an illustrative example to support our main result.

Fast Multiuser Detection in CDMA Systems Using Gradient Guided Search (Gradient Guided 탐색을 이용한 고속 CDMA 다중사용자 검출)

  • Choi, Yang-Ho
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.143-148
    • /
    • 2004
  • We present a fast algorithm for CDMA (code division multiple access) multiuser detection using the gradient guided search. The fast algorithm calculates the maximum likelihood (ML) metric so efficiently that it needs only O(K) additions in the presence of K users once some initialization is completed. The computational advantages of the fast algorithm over the conventional method are more noticeable as more iterations are required to obtain a suboptimal solution as in the initialization with matched filters.

  • PDF

EXPANSIVITY OF A CONTINUOUS SURJECTION

  • Choi, Sung Kyu;Chu, Chin-Ku;Park, Jong Suh
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.7-23
    • /
    • 2002
  • We introduce the notion of expansivity for a continuous surjection on a compact metric space, as the positively and negatively expansive map. We also prove that some well-known properties about positively expansive maps in [2] hold by using our definition.

  • PDF

CHAIN RECURRENCE AND ATTRACTORS IN GENERAL DYNAMICAL SYSTEMS

  • Lee, Kyung-Bok;Park, Jong-Shu
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.575-586
    • /
    • 2007
  • We introduce here notions of chain recurrent sets, attractors and its basins for general dynamical systems and prove important properties including (i) the chain recurrent set CR(f) of f on a metric space (X, d) is the complement of the union of sets B(A) -A as A varies over the collection of attractors and (ii) genericity of general dynamical systems.

CONVERGENCE RATE OF EXTREMES FOR THE GENERALIZED SHORT-TAILED SYMMETRIC DISTRIBUTION

  • Lin, Fuming;Peng, Zuoxiang;Yu, Kaizhi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1549-1566
    • /
    • 2016
  • Denote $M_n$ the maximum of n independent and identically distributed variables from the generalized short-tailed symmetric distribution. This paper shows the pointwise convergence rate of the distribution of $M_n$ to exp($\exp(-e^{-x})$) and the supremum-metric-based convergence rate as well.

THE COMPLETION OF SOME METRIC SPACE OF FUZZY NUMBERS

  • Choi, Hee-Chan
    • The Pure and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.9-16
    • /
    • 1995
  • D. Dubois and H. Prade introduced the notions of fuzzy numbers and defined its basic operations [3]. R. Goetschel, W. Voxman, A. Kaufmann, M. Gupta and G. Zhang [4,5,6,9] have done much work about fuzzy numbers. Let $\mathbb{R}$ the set of all real numbers and $F^{*}(\mathbb{R})$ all fuzzy subsets defined on $\mathbb{R}$. G. Zhang [8] defined the fuzzy number $\tilde{a}\;\in\;F^{*}(\mathbb{R})$ as follows : (omitted)

  • PDF

SOME RELATIONS BETWEEN FUNCTION SPACES ON R$^n$

  • Shin, Seung-Hyun
    • The Pure and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.31-34
    • /
    • 1995
  • Let R$^n$be n-th Euclidean space. Let be the n-th spere embeded as a subspace in R$\^$n+1/ centered at the origin. In this paper, we are going to consider the function space F = {f│f : S$^n$\longrightarrow S$^n$} metrized by as follow D(f,g)=d(f($\chi$), g($\chi$)) where f, g $\in$ F and d is the metric in S$^n$. Finally we want to find certain relation these spaces.(omitted)

  • PDF