• Title/Summary/Keyword: b${\beta}$-casein

Search Result 39, Processing Time 0.021 seconds

Genes Associated with Radiation Adaptive Response Induced by Low Level Radiation from $^{99m}Tc$ in Human Cell Lines (인체세포주에서 저선량 $^{99m}Tc$에 의해 발현되는 방사선 적응반응에 관련된 유전자에 관한 연구)

  • Kwon, An-Sung;Bom, Hee-Seung;Choi, Chan;Kim, Ji-Yeul;Lim, Wook-Bin
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.5
    • /
    • pp.313-323
    • /
    • 2001
  • Purpose: The purpose of this study was to search activated genes that could be related to radiation adaptive response (RAR) induced by low-level radiation from $^{99m}Tc$ in human cell lines. Methods: We used gene discovery array (GDA) and representational difference analysis (RDA) methods. $^{99m}Tc$-pertechnetate was added to $2{\times}106/mL$ NC-37 cells (human lymphoblastic cells) to make concentrations ranging from 148 MBq/mL to 148 Bq/mL by serial 10 fold dilutions. After 44 hours, 2 Gy gamma irradiation was given to them using a Cs-137 cell irradiator. Results: As compared to the control (Con) group to which no $^{99m}Tc$ was added, those cells to which 148 and 14.8 KBq of $^{99m}Tc$ were added showed significantly lower damage to chromosomes, which was evaluated by metaphase analysis. Cells with 148 KBq $^{99m}Tc$ (T148 group) showed most significant protection. Activated genes in the T148 group as compared to Con group were evaluated by GDA and GDA methods. GDA revealed genes of casein kinase 2 (CK2) beta chain, immunoglobulins (lg), human leukocyte antigen (HLA)-B, and two novel genes. Twenty RAR related clones were selected by RDA method. The size of those genes was from 234 to 603 base pairs. Conclusions: RAR was induced by low dose irradiation from $^{99m}Tc$ in NC-37 cell lines. Genes related to the response included CK2, lg, HLA-B in human lymphoblastic cell lines.

  • PDF

Production of Bovine Transgenic Embryos Derived from Non-transfected and Transfected Adult Cells (외부유전자가 도입된 체세포를 이용한 소 형질전환 복제란 생산)

  • J. K. Cho;M.M.U. Bhuiyan;G. Jang;Park, E. S.;J. M. Lim;S. K. Kang;Lee, B. C.;W. S. Hwang
    • Journal of Embryo Transfer
    • /
    • v.17 no.2
    • /
    • pp.109-115
    • /
    • 2002
  • The present study was conducted for the production of transgenic cloned cows those secrete human lactoferricin into milk by somatic cell nuclear transfer (NT). To estimate detrimental effects of gene transfection on transgenic cloned embryo production, development rates of NT embryos were compared between transfected and non-transfected cumulus and ear fibroblast cells. An expression plasmid for human lactofericin (pbeta-LFC) was constructed by inserting a bovine beta-casein promoter, a green fluorescent protein (GFP) marker gene, and human lactoferricin target gene into a pcDNA3 plasmid. Two bovine somatic cell lines (cumulus cell and ear fibroblast) were established and transfected with the expression plasmid using a liposomal transfection reagent, Fugene6 as a carrier. Cumulus cell and ear fibroblast were transfected at the passage of 2 to 4, trypsinized and GFP-expressing cells were randomly selected and used for somatic cell NT. Developmental competences (rates of fusion, cleavage, and blastocyst formation) in bovine transgenic somatic cell NT embryos reconstructed with non-transfectecd cells were significantly higher than those from transfected cells in cumulus cell and ear fibroblast (P<0.05). This study indicated that transfection of done. cell has detrimental effect on embryo development in bovine transgenic NT.

Production of Bovine Transgenic Cloned Embryos using Prourokinase-Transfected Somatic Cells: Effect of Expression Level of Reporter Gene (인간 Prourokinase가 도입된 체세포를 이용한 소 형질전환 복제란 생산: 표지유전자 발현정도에 따른 효과)

  • J. K. Cho;M.M.U. Bhuiyan;G. Jang;G. Jang;Park, E. S.;S. K. Kang;Lee, B. C.;W. S. Hwang
    • Journal of Embryo Transfer
    • /
    • v.17 no.2
    • /
    • pp.101-108
    • /
    • 2002
  • Human Prourokinase (proUK) offers potential as a novel agent with improved fibrin specificity and, as such, may offer advantages as an attractive alternative to urokinase that is associated with clinical benefits in patients with acute peripheral arterial occlusion. For production of transgenic cow as human proUK bioreacotor, we conducted this study to establish efficient production system for bovine transgenic embryos by somatic cell nuclear transfer (NT) using human prourokinase gene transfected donor cell. An expression plasmid for human prourokinase was constructed by inserting a bovine beta-casein promoter, a green fluorescent protein (GFP) marker gene, and human prourokinase target gene into a pcDNA3 plasmid. Cumulus cells were used as donor cell and transfected with the expression plasmid using the Fugene 6 as a carrier. To increase the efficiency for the production of transgenic NT, development rates were compared between non-transfected and transfected cell in experiment 1, and in experiment 2, development rates were compared according to level of GFP expression in donor cells. In experiment 1, development rates of non-transgenic NT embryos were significantly higher than transgenic NT embryos (43.3 vs. 28.4%). In experiment 2, there were no significant differences in fusion rates (85.4 vs. 78.9%) and cleavage rates (78.7 vs. 84.4%) between low and high expressed cells. However, development rates to blastocyst were higher in low expressed cells (17.0 vs. 33.3%), and GFP expression rates in blastocyst were higher in high expressed cells (75.0 vs. 43.3%), significantly.

Establishment of an Efficient System for the Production of Transgenic Somatic Cell Nuclear Transfer Embryos

  • Cho, J.K.;Bhuiyan, M.M.U.;Jang, G.;Park, E.S.;Chang, K.H.;Park, H.J.;Lim, J.M.;Kang, S.K.;Lee, B.C.;Hwang, W.S.
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.75-75
    • /
    • 2002
  • The present study was conducted for the production of transgenic cloned cows by somatic cell nuclear transfer (SCNT) that secrete human prourokinase into milk. To establish an efficient production system for bovine transgenic SCNT embryos, the offset was examined of various conditions of donor cells including cell type, size, and passage number on the developmental competence of transgenic SCNT embryos. An expression plasmid far human prourokinase (pbeta-ProU) was constructed by inserting a bovine beta-casein promoter, a green fluorescent protein (GFP) marker gene, and a human prourokinase target gene into a pcDNA3 plasmid. Three types of bovine somatic cells including two adult cells (cumulus cells and ear fibroblasts) and fetal fibroblasts were prepared and transfected using a lipid-meidated method. In Experiment 1, developmental competence and rates of GFP expression in bovine transgenic SCNT embryos reconstructed with cumulus cells were significantly higher than those from fetal and ear fibroblasts. In Experiment 2, the effect of cellular senescence in early (2 to 4) and late (8 to 12) passages was investigated. No significant differences in the development of transgenic SCNT embryos were observed. In Experient 3, different sizes of GFP-expressing transfected cumulus cells [large (>30 ${\mu}{\textrm}{m}$) or small cell (<30 ${\mu}{\textrm}{m}$)] were used for SCNT. A significant improvement in embryo development and GFP expression was observed when small cumulus cells were used for SCNT. Taken together, these results demonstrate that (1) adult somatic cells could serve as donor cells in transgenic SCNT embryo production and cumulus cells with small size at early passage were the optimal cell type, and (2) transgenic SCNT embryos derived from adult somatic cells have embryonic development potential.

  • PDF

Purification and Characterization of a New Fibrinolytic Enzyme of Bacillus licheniformis KJ-31, Isolated from Korean Traditional Jeot-gal

  • Hwang, Kyung-Ju;Choi, Kyoung-Hwa;Kim, Myo-Jeong;Park, Cheon-Seok;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1469-1476
    • /
    • 2007
  • Jeot-gal is a traditional Korean fermented seafood and has long been used for seasoning. We isolated 188 strains from shrimp, anchovy, and yellow corvina Jeot-gal, and screened sixteen strains that showed strong fibrinolytic activities on a fibrin plate. Among those strains, the strain that had the largest halo zone was chosen and identified as Bacillus licheniformis by using 16S rDNA sequencing and an API CHB kit. The fibrinolytic activity of Bacillus licheniformis was characterized and designated as bpKJ-31. The active component of bpKJ-31 was identified as a 37 kDa protein, designated bacillopeptidase F, by internal peptide mapping and N-terminal sequencing. The optimum activity of bpKJ-31 was shown at pH 9 and $40^{\circ}C$, with a chromogenic substrate for plasmin. It had high degrading activity for the $B{\beta}$-chain and $A{\alpha}$-chain of fibrin(ogen), and also acted on thrombin, but not skim milk and casein. The amidolytic activity of bpKJ-31 was inhibited by 1 mM phenylmethanesulfonyl fluoride, but 1 mM EDTA did not affect the enzyme activity, indicating that bpKJ-31 is an alkaline serine protease, like a plasmin. The bpKJ-31 showed approximately 14.3% higher fibrinolytic activity than the plasmin. These features of bpKJ-31 make it attractive as a health-promoting biomaterial.

Production of Cloned Bovine Embryos Carrying with Human Thrombopoietin Gene

  • K.I. Wee;B.H. Son;Park, Y.H.;Park, J.S.;D.H. Ko;Lee, K.K.;Y.M. Han
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.60-60
    • /
    • 2001
  • Human thrombopoietin (hTPO) is a cytokine that plays a central role in megakaryopoiesis by influencing on the development and maturation of megakaryocyte and platelet production. To induce hTPO production in the mammary gland, expression vector was constructed by combining the promoter of bovine beta-casein gene, cDNA of hTPO and neomycine resistance gene for transfection into fibroblasts. Bovine fibroblast cells derived from female ear skin were transfercted with the expression vector using Lipofectamine (Life Technology, NY). Transected cells resistant to G4l8 treatment (600 $\mu\textrm{g}$/$m\ell$) were recovered and colony formation was initiated at 13 days. The colonies with about 1 cm diameter were picked and analysed by PCR. Single transfected cells were individually transferred to enucleated oocytes. After electrofusion, the reconstructed embryos were exposed to calcium ionophore (5uM) for 5 min followed by treatment with 6-DMAP (2.5 mM) for 4h. The nuclear transfer embryos were cultured in CRlaa medium at 38.5C, 5% $CO_2$ for 7 days. Twenty three of 29 (79.3%) colonies were proved to be hTPO transfectants by PCR. The colonies were further passaged and used to produce transgenic embryos using nuclear transfer. Cleavage and developmental rates of reconstructed embryos to the blastocyst stage were 65.1% and 39.4%, respectively Of 22 blastocysts that developed from reconstructed embryos with the transfected cell, 20 embryos (90.9%) were positive for hTPO by using PCR analysis. The results suggest that somatic cell nuclear transfer is efficient for production of transgenic embryos.

  • PDF

Effect of Defined KSOM Medium on the Development of 1-antitrypsin Transgenic Nuclear Transfer Bovine Embryos

  • M.M.U. Bhuiyan;J.K. Cho;G. Jang;Park, E.S.;S.K. Kang;Lee, B.C.;W.S. Hwang
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.74-74
    • /
    • 2002
  • Production of u 1-antitrypsin ($\alpha$AT) in transgenic cows has a great value in the field of medicine. The present study was conducted to determine the effect of chemically defined KSOM media on in vitro development of bovine transgenic nuclear transfer (NT) embryos. An expression plasmid for human $\alpha$AT was constructed by inserting a bovine beta-casein promoter, a green fluorescent protein (GFP) marker gene, and a human $\alpha$AT target gene into a pcDNA3 plasmid. Cumulus cells as donor nuclei in NT were collected from a Holstein cow and transfected by lipid-mediated method using FuGene6 (Roche Molecular Biochemicals, USA) as reagent. GFP expressed cumulus cells were introduced into recipient oocytes under DIC microscopy equipped with FITC filter set. After electrical fusion and chemical activation, reconstructed embryos were cultured in 1) SOF + 0.8% BSA, 2) KSOM + 0.8% BSA, 3) KSOM + 10% FBS and 4) KSOM +0.01% PVA for 192 h at 39$^{\circ}C$ with 5% $CO_2$, 5% $O_2$ and 90% $N_2$in humidified condition. The development of the embryos was recorded and the GFP expression in blastocyst was determined under FITC filter. The average fusion rate was 73.8% (251/340; n=8). The development rates to 2-4 cells, morula, blastocysts and expression rates in blastocysts varied from 70.3 to 76.5%, 30.2 to 33.8%, 25.4 to 33.8% and 11.8 to 15.6%, respectively. The difference in development and expression rates of embryos among 4 culture groups was not significant (P>0.05). This study indicates that chemically defined KSOM medium is also able to support development of bovine transgenic NT embryos at similar rate of SOF or KSOM supplemented with BSA or serum.

  • PDF

Efficient Production of Cloned Bovine Embryos from Transformed Somatic Cells (형질전환 체세포로부터 소 복제수정란의 효율적인 생산)

  • Wee G.;B. H Sohn;Park, J. S.;D. B. Koo;Lee, K. K.;Y. M. Han
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.1
    • /
    • pp.25-34
    • /
    • 2003
  • Human thrombopoietin (hTPO) is a cytokine that plays a central role in megakaryopoiesis. To direct hTPO expression in the mammary gland, an expression vector was constructed by combining the promoter of bovine beta-casein gene, cDNA of hTPO and neomycin resistance gene (pBT-L neo). Fibroblast cells derived from cow's ear skin tissue were transfected with the expression vector (pBT-L neo) using Lipofectamine. Transfected cells resistant to G418 trea?nt were cultured to form the colonies for more than 2 weeks. The transformed colonies identified by PCR were further expanded prior to nuclear transfer. Reconstructed oocytes with transformed cells were electrofused, activated using calcium ionophore and 6-DMAP, and cultured in vitro for 7 days. Of 35 cell colonies analyzed by PCR, 29 colonies (82.9%) were positive for the hTPO gene. Cleavage and developmental rates to the blastocyst stage of reconstructed embryos with the transformed cells were 65.1% and 23.8%, respectively Of 29 blastocysts that developed from reconstructed embryos with the transformed cells, 27 embryos (93.1%) were transgenic. These results indicate that transgenic bovine embryos can be efficiently produced by somatic cell nuclear transfer using transformed cells.

High-level Expression and Characterization of the Human Interleukin-10 in the Milk of Transgenic Mice

  • Zneng, Z. Y.;B. H. Sohn;K. B. Oh;W. J. Shin;Y. M. Han;Lee, K. K.
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.46-46
    • /
    • 2003
  • Interleukin-10 (IL-10) is a homodimeric protein with a wide spectrum of anti-inflammatory and immune activities. It inhibits cytokine production and expression of immune surface molecules in various cell types. The transgenic mice carrying the human IL-10 gene in conjunction with the bovine $\beta$-casein promoter produced the human IL-10 in milk during lactation. Transgenic mice were generated using a standard method as described previously. To screen transgenic mice, PCR was carried out using chromosomal DNA extracted from tail or toe tissues with a primer set. In this study, stability of germ line transmission and expression of IL-10 gene integrated into host chromosome were monitored up to generation F15 of a transgenic line. When female mouse of generation F9 was crossbred with normal male, generation F9 to F15 mice showed similar transmission rates (66.0$\pm$20.13%, 61.5$\pm$16.66%, 41.1$\pm$8.40%, 40.7$\pm$20.34%, 61.3$\pm$10.75%, 49.2$\pm$18.82%, and 43.8$\pm$25.91%, respectively), implying that the IL-10 gene can be transmitted stably up to long term generation in the transgenic mice. For ELISA analysis, IL-10 expression levels were determined with an hIL-10 ELISA and a mIL-10 ELISA kit in accordance with the supplier's protocol. Expression levels of human IL-10 from milk of generation F9 to F13 mice were 3.6$\pm$1.20 mg/ml, 4.2$\pm$0.93 mg/ml, 5.7$\pm$1.46 mg/ml, 6.3$\pm$3.46 mg/ml, and 6.8$\pm$4.52 mg/ml, respectively. These expression levels are higher than in generation F1 (1.6 mg/ml) mice. We concluded that transgenic mice faithfully passed the transgene on their progeny and successively secreted target proteins into their milk through several generations, although there was a little fluctuation in the transmission frequency and expression level between the generations.

  • PDF