Neurons make long-distance connections via their axons, and the accuracy and stability of these connections are crucial for brain function. Research using various animal models showed that the molecular and cellular mechanisms underlying the assembly and maintenance of neuronal circuitry are highly conserved in vertebrates. Therefore, to gain a deeper understanding of brain development and maintenance, an efficient vertebrate model is required, where the axons of a defined neuronal cell type can be genetically manipulated and selectively visualized in vivo. Placental mammals pose an experimental challenge, as time-consuming breeding of genetically modified animals is required due to their in utero development. Xenopus laevis, the most commonly used amphibian model, offers comparative advantages, since their embryos ex utero during which embryological manipulations can be performed. However, the tetraploidy of the X. laevis genome makes them not ideal for genetic studies. Here, we use Xenopus tropicalis, a diploid amphibian species, to visualize axonal pathfinding and degeneration of a single central nervous system neuronal cell type, the retinal ganglion cell (RGC). First, we show that RGC axons follow the developmental trajectory previously described in X. laevis with a slightly different timeline. Second, we demonstrate that co-electroporation of DNA and/or oligonucleotides enables the visualization of gene function-altered RGC axons in an intact brain. Finally, using this method, we show that the axon-autonomous, Sarm1-dependent axon destruction program operates in X. tropicalis. Taken together, the present study demonstrates that the visual system of X. tropicalis is a highly efficient model to identify new molecular mechanisms underlying axon guidance and survival.
In mammals. axotomy of peripheral nerve leads to a complex. These events include swelling of cell body, disappearance of Nissl substance. Proximal and distal axon undergoes a variable deriable degree of traumatic degeneration and wallerian degeneration, respectively. Nerve injury may result in cell death or regeneration. Molecular changes include proliferation of Schwann cells, upregulation of neurotropism, neural cell adhesion molecules and cytokine. Also growth cone plays an essential role in axon guidance through interaction of cytoskeleton. We review cellular and molecular events after nerve injury and describe nerve regeneration and associated proteins.
A nerve block is an effective tool for diagnostic and therapeutic methods. If a diagnostic nerve block is successful for pain relief and the subsequent therapeutic nerve block is effective for only a limited duration, the next step that should be considered is a nerve ablation or modulation. The nerve ablation causes iatrogenic neural degeneration aiming only for sensory or sympathetic denervation without motor deficits. Nerve ablation produces the interruption of axonal continuity, degeneration of nerve fibers distal to the lesion (Wallerian degeneration), and the eventual death of axotomized neurons. The nerve ablation methods currently available for resection/removal of innervation are performed by either chemical or thermal ablation. Meanwhile, the nerve modulation method for interruption of innervation is performed using an electromagnetic field of pulsed radiofrequency. According to Sunderland's classification, it is first and foremost suggested that current neural ablations produce third degree peripheral nerve injury (PNI) to the myelin, axon, and endoneurium without any disruption of the fascicular arrangement, perineurium, and epineurium. The merit of Sunderland's third degree PNI is to produce a reversible injury. However, its shortcoming is the recurrence of pain and the necessity of repeated ablative procedures. The molecular mechanisms related to axonal regeneration after injury include cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules, and their receptors. It is essential to establish a safe, long-standing denervation method without any complications in future practices based on the mechanisms of nerve degeneration as well as following regeneration.
Degeneration of the axon terminals of mamillo-thalamic tract following the electrical coagulation of mamillary body is well known. In this study, the author investigated the ultrastructural alterations of neuropil components, initiated by terminal degenerations. Rats weighing approximately 250 gm were fixed on the stereotaxic instrument(David Kopf Inc., Heavy duty model), and NE 300 active electrode(Rhodes Med. Instr. Inc.) was introduced to the mamillary position of anterior 3.8 mm, lateral 0.5 mm, height 3.8 mm and lateral angle of $23^{\circ}$ according to De Groot's Atlas. Electric current of 20 mA was applied during 1 minute between active and inactive electrodes with Radio Frequency Lesion Generator(RFG 4, Radionics Inc.). Two hours, 2 days, 1 week and 2 weeks following the electrical coagulation of mamillary body, ipsilateral anterior thalamic nucleus was fixed in 1% glutaraldehyde-l% paraformaldehyde and 2% osmium tetroxide, embedded in Araldite mixture, cutted with LKB ultra tome V, stained with uranyl acetate-lead citrate and observed with JEOL 100 CX electron microscope. Observed results were as follows; 1. Degenerated mamillo-thalamic synapses were observed to form asymmetric axospinous or axo-dendritic types. 2. Terminal degeneration was not easily discernible at 2 hours interval after mamillary lesion, but following 2 days the terminal degeneration was apparent. 3. Postsynaptic spines, dendrites and even their cell bodies show edematic changes caused by the degeneration of postsynaptic counterpart. 4. Astrocytic territories, including perivascular processes forming glial limitans of blood-brain barrier, exhibit remarkable expansion. 5. Oligoglia and astroglia are actively engaged in the removal of degenerated elements. 6. Active forms of microglia were increased. 7. The observed results may represent typical ultrastructural alteration pattern within neuropil following the degeneration of certain input axon terminals.
Nitric oxide (NO) serves as an evolutionarily conserved signaling molecule that plays an important role in a wide variety of cellular processes. Extensive studies in Drosophila melanogaster have revealed that NO signaling is required for development, physiology, and stress responses in many different types of cells. In neuronal cells, multiple NO signaling pathways appear to operate in different combinations to regulate learning and memory formation, synaptic transmission, selective synaptic connections, axon degeneration, and axon regrowth. During organ development, elevated NO signaling suppresses cell cycle progression, whereas downregulated NO leads to an increase in larval body size via modulation of hormone signaling. The most striking feature of the Drosophila NO synthase is that various stressors, such as neuropeptides, aberrant proteins, hypoxia, bacterial infection, and mechanical injury, can activate Drosophila NO synthase, initially regulating cellular physiology to enable cells to survive. However, under severe stress or pathophysiological conditions, high levels of NO promote regulated cell death and the development of neurodegenerative diseases. In this review, I highlight and discuss the current understanding of molecular mechanisms by which NO signaling regulates distinct cellular functions and behaviors.
Evidence shows that nerve injury triggers mitochondrial dysfunction during axonal degeneration. Mitochondria play a pivotal role in axonal regeneration. Therefore, normalizing mitochondrial energy metabolism may represent an elective therapeutic strategy contributing to nerve recovery after damage. Photobiomodulation (PBM) induces a photobiological effect by stimulating mitochondrial activity. An increasing body of evidence demonstrates that PBM improves ATP generation and modulates many of the secondary mediators [reactive oxygen species (ROS), nitric oxide (NO), cyclic adenosine monophosphate (cAMP), and calcium ions (Ca2+)], which in turn activate multiple pathways involved in axonal regeneration.
Jo, Young Rae;Park, Hwan Tae;Yu, Hak Sun;Kong, Hyun-Hee
Parasites, Hosts and Diseases
/
v.60
no.4
/
pp.247-254
/
2022
Vincristine (VCR) is a chemotherapeutic agent widely used in treatment of malignancies. However, VCR has a limitation in use since it commonly causes a painful neuropathy (VCR-induced peripheral neuropathy, VIPN). Inflammatory cytokines secreted by immune cells such as macrophages can exacerbate allodynia and hyperalgesia, because inhibiting the inflammatory response is a treatment target for VIPN. In this study, we investigated whether Trichinella spiralis, a widely studied helminth for its immunomodulatory abilities, can alleviate VCR-induced allodynia. Von Frey test showed that T. spiralis infection improved mechanical allodynia at 10 days after VCR injection. We further observed whether the difference was due to mitigated axon degeneration, but no significant difference between the groups in axonal degeneration in sciatic nerves and intra-epidermal nerve fibers was found. Conversely, we observed that number of infiltrated macrophages was decreased in the sciatic nerves of the T. spiralis infected mice. Moreover, treatment of T. spiralis excretory-secretory products caused peritoneal macrophages to secrete decreased level of IL-1β. This study suggests that T. spiralis can relieve VCR-induced mechanical allodynia by suppressing neuroinflammation and that application of controllable degree of helminth may prove beneficial for VIPN treatment.
This study has been performed to investigate normal synaptic organizations in the subesophageal ganglion and terminaiion of antennal receptor cells in the ipsilateral subesophageal gan91ion of Pieris rapae. The various normal synaptic organizations in subesophageal ganglion could be differentiated into the five types. The proximal removal of a left antenna resulted in the weakly-dark, semidark and dark degenerations in the type I bostons of the ipsilateral subesophageal ganglion. Therefore, it was concluded that the axon terminals of the receptor cells projecting from the antenna into the brain form the type 1 synapses together with the dendrites in the ipsilateral subesophageal ganglion.
The ipsilateral dorsal lobe of the brain one or two days after cutting a left antenna in Pieris rapae has been examined with electron microscope to investigate the connection of the receptor cells between antenna and dorsal lobe. The proximal removal of the left antenna leads to the weakly-dark, semidark or dark degeneration of antennal receptor tenninals in ipsilateral dorsal lobe. Therefore, it is concluded that some of antennal receptor cells which project into the brain terminate in ipsilateral dorsal lobe located immediately behind the antennal lobe.
A Shih Tzu Puppy had clinical onset of anotexia crying and progression of neurological sings when enlargement of the cranial vault at 1 month old and died after showing clinical signs during 2 months period. Radiological and pathological examinations were performed. Radiological findings were homogeneous appearance of the calvaria with cortical thinning, loss of the normal convolutional skull markings and persistent fontanelles. Grossly enlargement of the cranial vault thinning of the bone and defective closure of the fontanelles were also observed. The entire subcortical area of the cerebral hemispheres with severe, dilatation of ventricles and cerebrospinal fluid(CSF) wits absent. There was parenchyma atrophy affecting chiefly in the white mater and the cerebral cortices, axon degeneration and necrosis and gitter cell infiltration in the whiter matter and the subependymal area. Mononuclear perivacular cuffing in the cerebrum and the pons was shown. Based on the radiological, gross and histopathological findings, this case was believed to have congenital hydrocephalus with nonsuppurative encephahitis. Possible etiology on the case is also discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.