• Title/Summary/Keyword: axisymmetry

Search Result 35, Processing Time 0.025 seconds

A Fundamental Study on the Gas Atomization of Liquid Metal (용융금속 미립화에 관한 기초적 연구)

  • Kang, Min-Sung;Choi, Jong-Youn;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2777-2781
    • /
    • 2008
  • Gas atomization of liquid metal using nozzle technology has more advantages over other methods. Previous study shows that high-velocity gas is important for effective liquid metal atomization. An important first step towards understanding the gas atomization using nozzle is complete evaluation of the flow fields. This will provide a basis for understanding how well high velocity gas is brought to bear on the liquid metal. Present work is a fundamental study of liquid metal atomization for various pressure ratio, different gas and temperature. A two-dimension, axisymmetry compressible Navier-Stokes equations are considered. Two-equation k-epsilon turbulence model is selected.

  • PDF

On the Sealing Characteristics Analysis and Design of Bi-Polymer O-ring seals (바이폴리머 O-링 시일의 밀봉특성 해석 및 설계)

  • 고영배;김청균;이일권
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.392-400
    • /
    • 2001
  • The sealing performance of an elastomeric O-ring seal using bi-materials has been analyzed for the contact stress behaviors that develop between the O-ring seal and the surfaces with which it comes into contact. The leakage of an O-ring seal will occur when the pressure differential across the seal just exceeds the initial (or static) peak contact stress. The contact stress behaviors that develop in compressed O-rings, in common case of restrained geometry(grooved), are investigated using the finite element method. The analysis includes material hyperelasticity and axisymmetry. The computed FEM results show that the contact stress behaviors are related to a ratio of length between NBR and FFKM and temperature of vaccum chamber.

  • PDF

Fininte element analysis of electron beam welding considering for moving heat source (이동 열원을 고려한 전자빔 용접의 유한요소해석)

  • Cho, Hae-Yong;Jung, Seok-Young;Kim, Myung-Han;Cho, Chang-Yong;Lee, Je-Hoon;Seo, Jung
    • Laser Solutions
    • /
    • v.4 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • Simulation on the electron beam welding of Al 2219 alloy was carried out by using commercial FEM code MARC, which encounters moving heat sources. Due to axisymmetry of geometry, a half of the cylinder was simulated. A coupled thermo-mechanical analysis was carried out and subroutine for heat flux was substituted in the program. The material properties such as specific heat, heat transfer coefficient and thermal expansion coefficient were given as a function of temperature and the latent heat associated with a given temperature range is considered. As a result, the proper beam power is 60㎸${\times}$60㎃ and welding speed is 1∼1.5 m/min. The residual stress in the heat-affected zone as well as the fusion zone does not increase. It is necessary to use jigs for preventing distortion of cylinder and improving weld quality.

  • PDF

Prediction of the Blast Wave Propagation Over a Kick Motor Test Facility (Kick Motor 시험장 충격파 전파 예측)

  • Ok, Ho-Nam;Kim, In-Sun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.220-223
    • /
    • 2008
  • A test facility to measure the performance of a KM(Kick Motor) is constructed, and prediction of blast wave propagation over the facility is performed to check if the safety of test personnel in MCC(Main Control Center) can be guaranteed even for the most severe explosion. Assuming that the initial explosion energy is contained in a sphere under the pressure of 500, 1000, 1500 psi, respectively, the radius of the sphere is determined for each pressure to set the mass of contained explosion gas to 35 kg. The material properties of explosion gas are set to be the ones of KM propellant combustion gas under normal condition. To reduce the effort and time required for a complex three-dimensional modeling, the flowfield is approximated to axismmetry. Calculations are performed for all three initial pressure conditions, and the analysis of the result is given for 1500 psi which is expected to be the worst case. The maximum pressure is 3.5 psig while the minimum pressure is -1.2 psig on the outer wall of MCC, and the maximum pressure difference between the inner and outer walls of protection wall amounts to 3.0 psi.

  • PDF

Effect of a Preprocessing Method on the Inversion of OH* Chemiluminescence Images Acquired for Visualizing SNG Swirl-stabilized Flame Structure (SNG 선회 안정화 화염구조 가시화를 위한 OH* 자발광 이미지 역변환에서 전처리 효과)

  • Ahn, Kwang Ho;Song, Won Joon;Cha, Dong Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.1
    • /
    • pp.24-31
    • /
    • 2015
  • Flame structure, which contains a useful information for studying combustion instability of the flame, is often quantitatively visualized with PLIF (planar laser-induced fluorescence) and/or chemiluminescence images. The latter, a line-integral of a flame property, needs to be preprocessed before being inverted, mainly due to its inherent noise and the axisymmetry assumption of the inversion. A preprocessing scheme utilizing multi-division of ROI (region of interest) of the chemiluminescence image is proposed. Its feasibility has been tested with OH PLIF and $OH^*$ chemiluminescence images of SNG (synthetic natural gas) swirl-stabilized flames taken from a model gas turbine combustor. It turns out that the multi-division technique outperforms two conventional ones: those are, one without preprocessing and the other with uni-division preprocessing, reconstructing the SNG flame structure much better than its two counterparts, when compared with the corresponding OH PLIF images. It is also found that the Canny edge detection algorithm used for detecting edges in the multi-division method works better than the Sobel algorithm does.

On the Motion Characteristics of a Freely-Floating Sphere in a Water of Finite Depth (유한수심(有限水深)의 해상(海上)에서 규칙파(規則波)에 놓인 구(球)의 운동특성(運動特性))

  • Hang-Shoon,Choi;Sung-Kyun,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.1
    • /
    • pp.23-32
    • /
    • 1982
  • Herein the motion of a freely-floating sphere in a water of finite depth is analysed within the framework of a linear potential theory. A velocity potential describing fluid motion is generated by distributing pulsating sources and dipoles on the immersed surface of the sphere, without introducing an inner flow model. The potential becomes the solution of an integral equation of Fredholm's second type. In the light of the vertical axisymmetry of the flow, surface integrals reduce to line integrals, which are approximated by summation of the products of the integrand and the length of segments along the contour. Following this computational scheme the diffraction potential and the radiation potential are determined from the same algorithm of solving a set of simultaneous linear equations. Upon knowing values of the potentials hydrodynamic forces such as added mass, hydrodynamic damping and wave exciting forces are evaluated by the integrating pressure over the immersed surface of the sphere. It is found in the case of finite water depth that the hydrodynamic forces are much different from the corresponding ones in deep water. Accordingly motion response of the sphere in a water of finite depth displays a particular behavior both in a amplitude and phase.

  • PDF

A Study on Wave Propagation in Drilling Boreholes at Low Frequencies (석유시추공에서의 저주파음향의 전달에 관한 연구)

  • H.Y. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.2
    • /
    • pp.84-92
    • /
    • 1995
  • To understand how low-frequency sound waves propagate axially in drilling boreholes, the propagation modes and speeds including the effect of interaction among layers are obtained by analyzing an infinitely-long, uniform, and cylindrically multi-layered waveguide which is consisted of fluid layers and solid layers. Assuming low frequency(wave length considered is very long compared to the borehole diameter), axisymmetry, non-viscosity, and etc., analytical solutions are obtained. Also, sound reflection due to the changes in the cross section is analyzed. Results for typical drilling boreholes show the usefulness of the method developed in this research, and are compared with FEM results showing good agreements.

  • PDF

Cavitating-Flow Characteristics around a Horn-Type Rudder (혼 타 주위의 캐비테이팅 유동 특성에 대한 연구)

  • Choi, Jung-Eun;Chung, Seak-Ho;Kim, Jung-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.228-237
    • /
    • 2007
  • The flow characteristics around a horn-type rudder behind an operating propeller of a high-speed large container carrier are studied through a numerical method in fully wetted and cavitating flow conditions. The computations are carried out in a small scale ratio of 10.00(gap space=5mm) to consider the gap effects. The Reynolds averaged Navier-Stokes equation for a mixed fluid and vapor transport equation applying cavitation model are solved. The axisymmetry body-force distribution technique is utilized to simulate the flow behind an operating propeller. The gap flow, the three-dimensional flow separation, and the cavitation are the flow characteristics of a horn-type rudder. The pattern of three-dimensional flow separation is analyzed utilizing a topological rule. The various cavity positions predicted by CFD were shown to be very similar to rudder erosion positions in real ship rudder. The effect of a preventing cavitation device, a horizontal guide plate, is also investigated.

Semi-analytical elastostatic analysis of two-dimensional domains with similar boundaries

  • Deeks, Andrew J.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.1
    • /
    • pp.99-118
    • /
    • 2002
  • The scaled-boundary finite element method is a novel semi-analytical technique, combining the advantages of the finite element and the boundary element methods with unique properties of its own. The method works by weakening the governing differential equations in one coordinate direction through the introduction of shape functions, then solving the weakened equations analytically in the other (radial) coordinate direction. These coordinate directions are defined by the geometry of the domain and a scaling centre. This paper presents a general development of the scaled boundary finite-element method for two-dimensional problems where two boundaries of the solution domain are similar. Unlike three-dimensional and axisymmetric problems of the same type, the use of logarithmic solutions of the weakened differential equations is found to be necessary. The accuracy and efficiency of the procedure is demonstrated through two examples. The first of these examples uses the standard finite element method to provide a comparable solution, while the second combines both solution techniques in a single analysis. One significant application of the new technique is the generation of transition super-elements requiring few degrees of freedom that can connect two regions of vastly different levels of discretisation.

An Analysis on Plume Behaviour of Rocket Engine with Ground Condition at High Altitude Engine Test Facility (고공시험설비에서 로켓엔진의 지상시험 플룸 거동 해석)

  • Kim, Seong-Lyong;Lee, SeungJae;Han, YoungMin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.112-115
    • /
    • 2017
  • We analyzed the rocket engine flow to check whether the possibility of the ground test and the equipment safety problems in the high altitude engine test facility. The test condition is that the vacuum chamber is open and the coolant water is injected into the supersonic diffuser. The analysis uses two-dimensional axisymmetry with a mixture of plume, air, and cooling water. As a result, the ground test was possible up to the cooling water flow rate of 200 kg/sec. However, due to the back flow of the initial plume, the vacuum chamber is exposed to high temperature, and at the same time, the inside of the vacuum chamber is contaminated due to the reverse flow of the cooling water. Therefore, sufficient insulation measures and work for pollution avoidance should be preceded.

  • PDF