• Title/Summary/Keyword: axially functionally graded nanobeam

Search Result 6, Processing Time 0.014 seconds

Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter

  • Aydogdu, Metin;Arda, Mustafa;Filiz, Seckin
    • Advances in nano research
    • /
    • v.6 no.3
    • /
    • pp.257-278
    • /
    • 2018
  • Vibration of axially functionally graded nano-rods and beams is investigated. It is assumed that the material properties change along the rod and beam length. The Ritz method with algebraic polynomials is used in the formulation of the problems. Stress gradient elasticity theory is utilized in order to include the nonlocal effects. Frequencies are obtained for different boundary conditions, geometrical and material properties. Nonlocal parameter is assumed as changing linearly or quadratically along the length of the nanostructure. Frequencies are compared to constant nonlocal parameter cases and considerable differences are observed between constant and variable nonlocal parameter cases. Mode shapes in various cases are depicted in order to explain the effects of axial grading.

Static bending study of AFG nanobeam using local stress-and strain-driven nonlocal integral models

  • Yuan Tang;Hai Qing
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.265-272
    • /
    • 2024
  • In this paper, the problem of static bending of axially functionally graded (AFG) nanobeam is formulated with the local stress(Lσ)- and strain-driven(εD) two-phase local/nonlocal integral models (TPNIMs). The novelty of the present study aims to compare the size-effects of nonlocal integral models on bending deflections of AFG Euler-Bernoulli nano-beams. The integral relation between strain and nonlocal stress components based on two types nonlocal integral models is transformed unitedly and equivalently into differential form with constitutive boundary conditions. Purely LσD- and εD-NIMs would lead to ill-posed mathematical formulation, and Purely εD- and LσD-nonlocal differential models (NDM) may result in inconsistent size-dependent bending responses. The general differential quadrature method is applied to obtain the numerical results for bending deflection and moment of AFG nanobeam subjected to different boundary and loading conditions. The influence of AFG index, nonlocal models, and nonlocal parameters on the bending deflections of AFG Euler-Bernoulli nanobeams is investigated numerically. A consistent softening effects can be obtained for both LσD- and εD-TPNIMs. The results from current work may provide useful guidelines for designing and optimizing AFG Euler-Bernoulli beam based nano instruments.

Static bending response of axially randomly oriented functionally graded carbon nanotubes reinforced composite nanobeams

  • Ahmed Amine Daikh;Ahmed Drai;Mohamed Ouejdi Belarbi;Mohammed Sid Ahmed Houari;Benoumer Aour;Mohamed A. Eltaher;Norhan A. Mohamed
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.289-301
    • /
    • 2024
  • In this work, an analytical model employing a new higher-order shear deformation beam theory is utilized to investigate the bending behavior of axially randomly oriented functionally graded carbon nanotubes reinforced composite nanobeams. A modified continuum nonlocal strain gradient theory is employed to incorporate both microstructural effects and geometric nano-scale length scales. The extended rule of mixture, along with molecular dynamics simulations, is used to assess the equivalent mechanical properties of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beams. Carbon nanotube reinforcements are randomly distributed axially along the length of the beam. The equilibrium equations, accompanied by nonclassical boundary conditions, are formulated, and Navier's procedure is used to solve the resulting differential equation, yielding the response of the nanobeam under various mechanical loadings, including uniform, linear, and sinusoidal loads. Numerical analysis is conducted to examine the influence of inhomogeneity parameters, geometric parameters, types of loading, as well as nonlocal and length scale parameters on the deflections and stresses of axially functionally graded carbon nanotubes reinforced composite (AFG CNTRC) nanobeams. The results indicate that, in contrast to the nonlocal parameter, the beam stiffness is increased by both the CNTs volume fraction and the length-scale parameter. The presented model is applicable for designing and analyzing microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) constructed from carbon nanotubes reinforced composite nanobeams.

Bending of axially functionally graded carbon nanotubes reinforced composite nanobeams

  • Ahmed Drai;Ahmed Amine Daikh;Mohamed Oujedi Belarbi;Mohammed Sid Ahmed Houari;Benoumer Aour;Amin Hamdi;Mohamed A. Eltaher
    • Advances in nano research
    • /
    • v.14 no.3
    • /
    • pp.211-224
    • /
    • 2023
  • This work presents a modified analytical model for the bending behavior of axially functionally graded (AFG) carbon nanotubes reinforced composite (CNTRC) nanobeams. New higher order shear deformation beam theory is exploited to satisfy parabolic variation of shear through thickness direction and zero shears at the bottom and top surfaces.A Modified continuum nonlocal strain gradient theoryis employed to include the microstructure and the geometrical nano-size length scales. The extended rule of the mixture and the molecular dynamics simulations are exploited to evaluate the equivalent mechanical properties of FG-CNTRC beams. Carbon nanotubes reinforcements are distributed axially through the beam length direction with a new power graded function with two parameters. The equilibrium equations are derived with associated nonclassical boundary conditions, and Navier's procedure are used to solve the obtained differential equation and get the response of nanobeam under uniform, linear, or sinusoidal mechanical loadings. Numerical results are carried out to investigate the impact of inhomogeneity parameters, geometrical parameters, loadings type, nonlocal and length scale parameters on deflections and stresses of the AFG CNTRC nanobeams. The proposed model can be used in the design and analysis of MEMS and NEMS systems fabricated from carbon nanotubes reinforced composite nanobeam.

Intelligent computer modelling and simulation for the large amplitude of nano systems

  • Yi, Wenjuan
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.63-75
    • /
    • 2022
  • The nonlinear dynamic behavior of a nonuniform small-scale nonlocal beam is investigated in this work. The nanobeam is theoretically modeled using the nonlocal Eringen theory, as well as a few of Von-nonlinear Kármán's theories and the classical beam theory. The Hamilton principle extracts partial differential equations (PDE) of an axially functionally graded (AFG) nano-scale beam consisting of SUS304 and Si3N4 throughout its length, and an elastic Winkler-Pasternak substrate supports the tapered AFG nanobeam. The beam thickness is a function of beam length, and it constantly varies throughout the length of the beam. The numerical solution strategy employs an iteration methodology connected with the generalized differential quadratic method (GDQM) to calculate the nonlinear outcomes. The nonlinear numerical results are presented in detail to examine the impact of various parameters such as nonlinear amplitude, nonlocal parameter, the component of the elastic foundation, rate of cross-section change, and volume fraction parameter on the linear and nonlinear free vibration characteristics of AFG nanobeam.

A novel porosity-based homogenization scheme for propagation of waves in axially-excited FG nanobeams

  • Ebrahimi, Farzad;Dabbagh, Ali
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.379-390
    • /
    • 2019
  • Putting emphasis on the effect of existence of porosity in the functionally graded materials (FGMs) on the dynamic responses of waves scattered in FG nanobeams resulted in implementation of a novel porosity-based homogenization method for FGMs and show its applicability in a wave propagation problem in the presence of axial pre-load for the first time. In the employed porosity-dependent method, the coupling between density and Young's moduli is included to consider for the effective moduli of the FG nanobeam by the means of a more reliable homogenization technique. The beam-type element will be modeled via the classical theory of beams, namely Euler-Bernoulli beam theory. Also, the dynamic form of the principle of virtual work will be extended for such nanobeams to derive the motion equations. Applying the nonlocal constitutive equations of Eringen on the obtained motion equations will be resulted in derivation of the nanobeam's governing equations. Depicted results reveal that the dispersion responses of FG nanobeams will be decreased as the porosity volume fraction is increased which must be noticed by the designers of advanced nanosize devices who are interested in employment of wave dispersion approach in continuous systems for specific goals.