• Title/Summary/Keyword: axial tension

Search Result 302, Processing Time 0.027 seconds

Variation of Axial Tension-Compression Fatigue Characteristics by UNSM on Ti-6Al-4V (Ti-6Al-4V재의 UNSM처리에 의한 축인장압축피로특성변화)

  • Suh, Chang-Min;Cho, Sung-Am;Pyoun, Young-Sik;Suh, Min-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.42-48
    • /
    • 2011
  • The present study makes three original contributions to nanoskinned Ti-6Al-4V materials. The nanoskins were fabricated on Ti-6Al-4V material using various surface treatments: deep rolling (DR), laser shot peening (LSP), and ultrasonic nanocrystal surface modification (UNSM). These surface treatments are newly developed techniques and are becoming more popular in industrial fields. A fatigue strength comparison at up to 106 cycles was conducted on these nanoskinned Ti-6Al-4V materials. Fatigue tests were carried out using MTS under axial loading tension-compression fatigue (R = -1, RT, 5 Hz, sinusoidal wave). The analysis of the crack initiation patterns in the nanoskinned Ti-6Al-4V materials found an interior originating crack pattern and surface originating crack type. Microscopic observation was mainly used to investigate the fatigue fractured sites. These surface modification techniques have been widely adopted, primarily because of the robust grade of their mechanical properties. These are mainly the result of the formation of a large-scale, deep, and useful compressive residual stress, the formation of nanocrystals by the severe plastic deformation (SPD) at the subsurface layer, and the increase in surface hardness.

Variation of Fatigue Properties in Nanoskinned Ti-6Al-4V - Rotating Bending and Axial Loading Tension-Compression Cycle - (Ti-6Al-4V 재의 UNSM 처리에 의한 피로특성변화 - 회전굽힘 피로시험과 축하중 인장압축 피로시험 비교 -)

  • Suh, Min-Soo;Pyoun, Young-Shik;Suh, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.443-449
    • /
    • 2012
  • Nanoskins were fabricated on a Ti-6Al-4V material by carrying out various surface treatments, i.e., deep rolling, laser shot peening, and ultrasonic nanocrystal surface modification (UNSM). These surface treatments are newly developed techniques and are becoming more popular for industrial applications. Fatigue tests were carried out using material test system (MTS); these tests included the axial loading tension-compression fatigue test (R = -1, RT, 5 Hz, sinusoidal wave) and rotating bending fatigue test (R = -1, RT, 3200 rpm). The analysis of the crack initiation pattern in the UNSM-treated material indicated that the crack was interior originating in the axial loading tension-compression cycle, and was surface originating in the bending fatigue test. UNSM treatment significantly improved the fatigue strength for the regime of above $10^6$ cycles that S-N curve of rotating bending stress clearly show the performance of a 5 mm titanium specimen after UNSM treatment is similar to that of an untreated 6 mm titanium specimen.

Design of bars in tension or compression exposed to a corrosive environment

  • Fridman, Mark M.;Elishakoff, Isaac
    • Ocean Systems Engineering
    • /
    • v.5 no.1
    • /
    • pp.21-30
    • /
    • 2015
  • This study is devoted to the optimal design of compressed bars under axial tensile or compressive forces and exposed to a corrosive environment. Dolinskii's linear stress corrosion model is adopted for analysis. Analytical and numerical results are derived for optimal variation of the cross-sectional area of the bar along its axis.

Dynamic Analysis of the Beam Subjected to the Axial Load and Moving Mass (이동질량 및 축 하중의 영향을 받는 보의 동적 거동)

  • Lee, Kyu-Ho;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.271-279
    • /
    • 2011
  • In this study, the dynamic analysis of a beam is analyzed by using the finite element method when the beam has moving mass and axial load. To consider the contact force between the moving mass and beam, coupled nonlinear equations of contact dynamics are derived, and then the weak form for the finite element method is established. The finite element computer programs based on the Lagrange multiplier method are developed to compute the contact force. Furthermore, a variety of simulations are performed for various design parameters such as moving mass velocity, compressive axial load and tension load. Finally, relations between the dynamic response and contact force are also discussed.

Critical Current Properties of Bi-2223/Ag tapes with respect to axial Strain (Bi-2223/Ag 고온 초전도 선재 변형에 따른 입계전류 특성)

  • 하홍수;오상수;하동우;심기덕;김상철;장현만;권영길;류강식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.69-73
    • /
    • 2001
  • In this study, we fabricated Bi-2223/Ag high temperature superconducting tapes using PIT(Powder-In-Tube) process to apply the superconducting magnet, cable and etc. It is inevitable to deform the superconducting taps with axial strain for application. Therefore, for the characterization of the strain sensitivity of the superconducting properties, the degradation of Bi-2223/Ag tapes due to axial strain were investigated by measuring the critical current as a function of applied tension strain and external magnetic field. The critical current of Bi-2223/Ag tapes were decreased slightly up to 0.3∼0.4% applied strain but, drastically decreased more than these strains. Superconducting filament cores consisted of brittle ceramic fibers were broken easily by the large strain and current path were decreased simultaneously.

  • PDF

Power Transmission Characteristics and Speed Ratio-Torque Load-Axial Force Relationship for a Metal V-Belt CVT (금속 V-벨트 CVT의 동력전달 특성과 변속비-부하토크-축력 관계)

  • 김광원;김현수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.349-357
    • /
    • 1990
  • Power transmission characteristics and speed ratio-torque load-axial force relationship for a metal V-belt CVT were investigated theoretically and experimentally. In the metal V-belt CVT drive, it was found that the power was transmitted by thrust force and that band tension should be greater than compression force between the metal blocks. The experimental results for the speed ratio-torque load-axial force relationship showed good agreement with those predicted using equations developed from theoretical considerations.

Bayesian estimation of tension in bridge hangers using modal frequency measurements

  • Papadimitriou, Costas;Giakoumi, Konstantina;Argyris, Costas;Spyrou, Leonidas A.;Panetsos, Panagiotis
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.4
    • /
    • pp.349-375
    • /
    • 2016
  • The tension of an arch bridge hanger is estimated using a number of experimentally identified modal frequencies. The hanger is connected through metallic plates to the bridge deck and arch. Two different categories of model classes are considered to simulate the vibrations of the hanger: an analytical model based on the Euler-Bernoulli beam theory, and a high-fidelity finite element (FE) model. A Bayesian parameter estimation and model selection method is used to discriminate between models, select the best model, and estimate the hanger tension and its uncertainty. It is demonstrated that the end plate connections and boundary conditions of the hanger due to the flexibility of the deck/arch significantly affect the estimate of the axial load and its uncertainty. A fixed-end high fidelity FE model of the hanger underestimates the hanger tension by more than 20 compared to a baseline FE model with flexible supports. Simplified beam models can give fairly accurate results, close to the ones obtained from the high fidelity FE model with flexible support conditions, provided that the concept of equivalent length is introduced and/or end rotational springs are included to simulate the flexibility of the hanger ends. The effect of the number of experimentally identified modal frequencies on the estimates of the hanger tension and its uncertainty is investigated.

Effects of Pre-tension and Additional Half-pin on Fracture Stability in Hybrid External Fixator System (강선의 인장력과 추가 Half pin이 혼성외고정장치 시스템의 안정성에 미치는 영향)

  • 김윤혁;이현근;박원만;오종건
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.389-392
    • /
    • 2004
  • It is clinically well known that pre-tension of wires increases the fracture stability in ring or hybrid external fixation. In some cases, additional half pin should be necessary to increase the stability when soft tissue impalement occurs during fixation. In this paper, the fracture stability of a hybrid external fixator system with different pre-tension effects and additional half-pins was analysed using FEM to investigate the effects of these pre-tension and half pin on the system stability quantitatively. 3-D finite element models of five different fixator frames were developed using by beam elements. In axial compression analysis, the fracture stiffness was increased maximally 62% as the pre-tension increased. In torsion analysis, in the other hand, there is little variations in the fracture stiffness. Additional half pin increased the system stiffness about 200 %. From the results, proper pre-tension and additional half pin would provide good methods to increase the fracture stability of the hybrid external fixator and provide more surgical options to minimize soft tissue damage at the fracture site.

  • PDF

Experimental and Numerical Study on Complex Multi-planar Welded Tubular Joints in Umbrella-Type Space Trusses with Long Overhangs

  • Jiao, Jinfeng;Ma, Xiao;Lei, Honggang;Chen, Y. Frank
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1525-1540
    • /
    • 2018
  • A test rig with multi-functional purposes was specifically designed and manufactured to study the behavior of multi-planar welded tubular joints subjected to multi-planar concurrent axial loading. An experimental investigation was conducted on full-scale welded tubular joints with each consisting of one chord and eight braces under monotonic loading conditions. Two pairs or four representative specimens (two specimens for each joint type) were tested, in which each pair was reinforced with two kinds of different internal stiffeners at the intersections between the chords using welded rectangular hollow steel sections (RHSSs) and the braces using rolled circular hollow steel sections (CHSSs) and welded RHSSs. The effects of different internal stiffeners at the chord-brace intersection on the load capacity of joints under concurrent multi-planar axial compression/tension are discussed. The test results of joint strengths, failure modes, and load-stress curves are presented. Finite element analyses were performed to verify the experimental results. The study results show that the two different joint types with the internal stiffeners at the chord-brace intersection under axial compression/tension significantly increase the corresponding ultimate strength to far exceed the usual design strength. The load carrying capacity of welded tubular joints decreases with a higher degree of the manufacturing imperfection in individual braces at the tubular joints. Furthermore, the interaction effect of the concurrent axial loading applied at the welded tubular joint on member stress is apparent.

A Study on Oil Consumption Related with the Piston Ring Pack with Thinner Ring Width and Lower Ring Tension (박폭 저장력 피스톤 링 팩에 대한 오일소모 연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.311-317
    • /
    • 2009
  • To satisfy the more severe emission regulation and the demand of higher fuel economy in near future, the combustion pressure and power output of engines is going to be higher. In order to get the reduction of engine emission and the higher power, it is needed the reduction of the tension and width of ring pack. The lower tension ring and the thinner width ring can bring not only the friction reduction between the ring and liner during engine running, but also the adjustment of the blow-by gas and oil consumption by changing in the pressure in the crevice volume and the axial motion of rings togethe with the adjustment of the inter-ring crevice volumes. In this study, by using a developed basic computer proglram that predicts the blow-by gas and oil consumption of engines, it is to be examined how satisfying the level of the blow-by gas and oil consumption as being installed the piston ring pack with thinner width ring and lower tension ring.