• Title/Summary/Keyword: axial tension

Search Result 302, Processing Time 0.027 seconds

Study on Ultrasonic Birefringence by Uniaxial Stress in Axisymmetric Solids (축대칭 고체내부의 단축 응력에 의한 초음파 복굴절 특성 연구)

  • Kim, Noh-Yu;Chang, Young-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.336-342
    • /
    • 2006
  • Uniaxial stress in ail axisymmetric body is the simplest example of ultrasonic stress measurement. However, the birefringence theory cannot be applied for axisymmetric solids because the axisymmetric stress field in the body does not make shy velocity difference in SH waves propagating in the axisymmetric direction. Conventional ultrasonic technique using the time-of-flight method also needs ultrasonic lengths of the unstressed and stressed body, which is very impractical. In this paper, the birefringence effect in axisymmetric solids under uniaxial stress is formulated to evaluate the axial stress inside the solid without measuring tile ultrasonic length. Theoretical derivation for the birefringence characteristics in the axisymmetric solids is made using the longitudinal and shear waves instead of two horizontally polarized shear waves. Tension test is conducted for carbon-steel specimen to measure the birefringence coefficient and investigate the validity of the theory. It is observed from experimental results that the velocity difference in two differently polarized acoustic waves is proportional to the uniaxial stress in the axisymmetric solid with a good agreement with the theoretical value.

Evaluation of Crack Growth Estimation Parameters of Thick-Walled Cylinder with Non-Idealized Circumferential Through-Wall Cracks (비 이상화된 원주방향 관통균열이 존재하는 두꺼운 배관의 균열 성장 매개변수 계산)

  • Han, Tae-Song;Huh, Nam-Su;Park, Chi-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.138-146
    • /
    • 2013
  • The present paper provides the elastic stress intensity factors(SIFs) of thick-walled cylinder with non-idealized circumferential through-wall cracks. For estimating these elastic SIFs, the systematic three-dimensional(3D) elastic finite element(FE) analyses were performed. In order to consider practical shape of thick-walled cylinder and non-idealized circumferential through-wall crack, the values of thickness of cylinder, reference crack length and crack length ratio were systematically varied. As for loading conditions, axial tension, global bending and internal pressure were considered. In particular, in order to calculate the SIFs of thick-walled cylinder with non-idealized circumferential through-wall crack from those of thick-walled cylinder with idealized circumferential through-wall crack, the correction factor representing the effect of non-idealized crack on the SIFs were proposed in this paper. The present results can be applied to accurately evaluate the rupture probabilities of nuclear piping considering actual crack growth behaviors.

Performance Test and Numerical Model Development of Restoring Viscous Damper for X-type Damper System (X형 감쇠시스템을 위한 복원성 점성 감쇠기 성능 실험 및 수치모형 개발)

  • Kim, David;Park, Jangho;Ok, Seung-Yong;Park, Wonsuk
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.52-57
    • /
    • 2016
  • In this study, a restoring viscous damper is introduced for X-type damper system which is designed for the seismic response control of large spatial structures. A nonlinear numerical model for its behavior is developed using the result of dynamic loading tests. The X-type damper system is composed of restoring viscous dampers and connecting devices such as adjustable wire bracing, where the damping capacity of the system is controllable by changing the number of the dampers. The restoring viscous damper is devised to exert main damping force in tension direction, which is effective to prevent the buckling of bracing subjected to compressive axial force. To evaluate the performance of the proposed damper, dynamic cyclic loading tests are performed by using manufactured dampers at full scale. In order to construct the numerical model of the damper system, its model parameters are first identified using a nonlinear curve fitting method with the test data. The numerical simulations are then performed to validate the accuracy of the numerical model in comparison with the experimental test results. It is expected that the proposed system is effectively applicable to various building structures for seismic performance enhancement.

Mismatch Limit Load Analyses for V-groove Welded Pipe with Through-wall Circumferential Defect in Centre of Weld (원주방향 관통균열이 용접부 중앙에 존재하는 V-그루브 맞대기 용접배관의 한계하중 해석)

  • Kim, Sang-Hyun;Han, Jae-Jun;Chung, Jin-Taek;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1379-1386
    • /
    • 2013
  • The present work reports the mismatch limit loads for a V-groove welded pipe for a circumferential crack using finite element (FE) analyses. To integrate the effect of groove angles on mismatch limit loads, one geometry-related slenderness parameter was modified by relevant geometric parameters including the groove angle, crack depth, and root opening based on plastic deformation patterns in the theory of plasticity. Circumferential through-wall cracks are located at the centre of the weldments with two different groove angles ($45^{\circ}$, $90^{\circ}$). With regard to the loading conditions, axial (longitudinal) tension and bending are applied for all cases. For the parent and weld metal, elastic-perfectly plastic materials are considered to simulate and analyze under- and over-matching conditions in plasticity. The overall results from the proposed solutions are found to be similar to the FE results.

The Numerical Study on Capacity Evaluation of Exposed Steel Column-Base Plate Connection (노출형 철골기둥-베이스 플레이트 접합부의 내력평가를 위한 수치적 연구)

  • Lee, Kwang-Ho;You, Young-Chan;Choi, Ki-Sun;Koo, Hye-Jin;Yoo, Mi-Na
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.26-34
    • /
    • 2016
  • The failure modes of steel column-base plate connection arranged on the basis of AISC Design Guide-#1 and -#10 are base plate tension and compression side flexural yielding, yielding, pull-out and shear failure of anchor rod, concrete crushing in concrete footing and steel column yielding. The bending moment capacity and failure mode in this connection are predicted using limit-state function and we compare these results and test result. In the case that thickness of base plate is relatively thick, bending moment capacity and failure mode in steel column-base plate connection accurately predicted. But in the case that thickness of base plate is relatively thin and axial force do not exist, prediction of failure mode in this connection is somewhat inaccurate.

Papers : Component Design of a composite Aircraft Fuselage (논문 : 복합재료 항공기 동체 부품 설계)

  • Kim,Seong-Yeol;Lee,Su-Yong;Park,Jeong-Seon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.65-74
    • /
    • 2002
  • Composite materials are used for main structural components of aircraft fuselage such as skin, stringer and frame to reduce weight. Failure and buckling analysis of the composite fuselage components have been done for structural design. The loads of MD90-30 are applied to each component. Various shapes of section such as I, Z and T-type are chosen as candidate composite stringer and frame. The analysis results of composite fuselage components are compared according to ply-angle and ply-number, and the section type. The numerical results shows that ply-angle and ply-number have important effects on failure caused by axial load for the frame are important design parameters of composite fuselage components. This study suggests several design tips for composite fuselage components.

Nonlinear Analysis of Precast Concrete Wall Structures (프리캐스트 콘크리트 판구조의 비선형 해석)

  • 서수연;이원호;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.189-196
    • /
    • 2000
  • The objective of this paper is to propose an analysis technique to predict the behavior of PC wall structures subjected to cyclic load. While PC wall panel is idealized by finite elements, the joints at which PC walls are connected each other are idealized by nonlinear spring elements. Axial and shear spring elements are developed for simulating shear, compression and tension behaviors of joints. The strength and stiffness of each spring elements we presented from the previous research results and incorporated into the computer program of DRAIN-2DX. The proposed analysis technique is evaluated by analyzing specimens previously tested and comparing with those. On the strength, stiffness, energy dissipation and lateral drift, analytical results show good agreements with test results. This means the proposed technique is effective to predict the response of the PC wall structures.

  • PDF

Dynamic Simulation of a Shipbuilding Erection Crane based on Wire Rope Dynamics (Wire Rope Dynamics 기반의 조선용 탑재 크레인 동역학 시뮬레이션)

  • Cha, Ju-Hwan;Ku, Nam-Kug;Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.119-127
    • /
    • 2012
  • A wire rope is comprised of several metal wires which are wound together like a helix and it can resist relatively large axial loads, as compared with bending and torsional loads. A shipbuilding crane for erection such as a floating crane, a gantry crane, and a crawler crane hoists up and down heavy blocks by using these wire ropes. Thus, it is necessary to find dynamic properties of a wire rope in order to safely lift the blocks using the crane. In this study, a formula for calculating the tension and torsional moment acting on wire ropes of the crane was derived based on the existing study, and then dynamic simulation of the crane was performed based on the formula. The result shows that the dynamic simulation can be applied to find the safe method for block erection of shipyards.

A Newly Designed Miniplate Staple for High Tibial Osteotomy (근위골절술을 위한 Staple 설계)

  • Mun, Mu-Seong;Bae, Dae-Kyung
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.19-22
    • /
    • 1995
  • A biomechanical study was made to demonstrate the superior mechanical performance of the newly designed Miniplate staple to the conventional Coventry staple in high tibial osteotomy(HTO). Using twenty fresh porcine tibiae, the fixational strengh of the two different types of staple in HTO was compared. To minimize the error due to the specimen-to-specimen individuality, the bone mineral density of the tibiae was measured with a bone densitometry (Dual photon absorptionometer, Luner, USA) and those with $0.8\;{\sim}\;1.2\;gm/cm^2$ at the proximal tibia was used in the biomechanical test. Testing was performed on a material testing system (Autogram ET-5, Shimatzu, Japan) with aid of a commercial data processor (IBM 80386/ ASYST). Using two differant loading modes, 'pull-out' and 'push-out', the maximum resistant force required to release the staple from the substrate bone was recorded. In the pull-out test, ten non-osteotomized specimens were used and the staple was pullout by subjecting an axial tension on the head of the staple inserted. While in the pull-out test where ten tibiae osteotomized in the usual way of HTO were used, the staple was not directly loaded. In this testing, as a mimic condition of the natural knee, the distal part of the specimen tibia was pushed horizontally in order for the staple to be pulled out while the proximal tibia was fixed. The pull-out strength of Coventry staple and miniplate staple were found to be $27.88\;{\pm}\;5.12\;kgf$ and $182.47\;{\pm}\;32.75\;kgf$, respectively. The push-out strength of Coventry staple and miniplate staple were $18.40\;{\pm}\;4.47\;kgf$ and $119.95\;{\pm}\;19.06\;kgf$, respectively. The result revealed that miniplate staple had the pull-out/ push-out strength at least fivetimes higher than Coventry staple. Based on the measured data, it was believed that the newly designed miniplate staple could provide much better postoperative fixation in HTO. The postoerative application of long leg casting may not be needed after HTO surgery.

  • PDF

Vibration Reduction Effects of Stay Cable Due to Friction Damper (마찰댐퍼에 의한 사장 케이블의 진동저감 효과)

  • Kim, Hyung Ku;Yhim, Sung Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.54-61
    • /
    • 2013
  • Stay cable has a strong axial rigidity due to large initial tension and, on the other hand, it has a weak laterally flexural rigidity. Wind loads or traffic loads cause the cables to vibrate significantly and affect the mechanical properties and the performance of cables of cable-stayed bridge (CSB). Therefore, the development of vibration reduction design is an urgent task to control the vibration vulnerable long-span bridges. As Friction damper (FD) shows to reduce the amplitude and duration time of vibration of cable of CSB from measured date in field test, friction damper can be considered that it is effective device significantly to reduce the amplitude and duration time in vibration of cable of CSB under traffic load, wind load and so on. Vibration characteristics of cable can change according to manufacturing method and type of established form. Nevertheless, analysis method in this study can present the design of friction damper for vibration reduction of cable of cable-stayed bridge from now on.