• 제목/요약/키워드: axial strain

검색결과 791건 처리시간 0.028초

Lateral strain-axial strain model for concrete columns confined by lateral reinforcement under axial compression

  • Hou, Chongchi;Zheng, Wenzhong
    • Structural Engineering and Mechanics
    • /
    • 제84권2호
    • /
    • pp.239-251
    • /
    • 2022
  • The use of lateral reinforcement in confined concrete columns can improve bearing capacity and deformability. The lateral responses of lateral reinforcement significantly influence the effective confining pressure on core concrete. However, lateral strain-axial strain model of concrete columns confined by lateral reinforcement has not received enough attention. In this paper, based on experimental results of 85 concrete columns confined by lateral reinforcement under axial compression, the effect of unconfined concrete compressive strength, volumetric ratio, lateral reinforcement yield strength, and confinement type on lateral strain-axial strain curves was investigated. Through parameter analysis, it indicated that with the same level of axial strain, the lateral strain slightly increased with the increase in the unconfined concrete compressive strength, but decreased with the increase in volumetric ratio significantly. The lateral reinforcement yield strength had slight influence on lateral strain-axial strain curves. At the same level of lateral strain, the axial strain of specimen with spiral was larger than that of specimen with stirrup. Furthermore, a lateral strain-axial strain model for concrete columns confined by lateral reinforcement under axial compression was proposed by introducing the effects of unconfined concrete compressive strength, volumetric ratio, confinement type and effective confining pressure, which showed good agreement with the experimental results.

경량기포혼합토의 축변형율 - 체적변형율 관계 (Axial strain - Volumetric strain Relationship of Light-Weighted Foam Soil)

  • 김주철;김병탁;윤길림;서인식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.853-860
    • /
    • 2003
  • Relationship between axial strain and volumetric strain of Light-Weighted Foam Soil (LWFS) are investigated. LWFS is composed of the dredged soil from offshore, cement and foam to reduce the unit weight and also increase compressive strength. For this purpose. the triaxial compression tests are carried out on the prepared specimens of LWFS with various conditions such as initial water contents, cement contents, and curing stresses, The test results of LWFS Indicated that the axial strain - volumetric strain relationship is almost linearity with increase cement contents and the unit weight but the relationship is non-linearity with decrease cement contents and the unit weight. In this study, it is found that assuming no change of cross section area of LWFS, axial strain occurring the poisson's ratio of zero, that the axial strain same to volumetric strain, steeply increases with decrease the unit weight, initial water content, and cement contents.

  • PDF

Modeling of heated concrete-filled steel tubes with steel fiber and tire rubber under axial compression

  • Sabetifar, Hassan;Nematzadeh, Mahdi;Gholampour, Aliakbar
    • Computers and Concrete
    • /
    • 제29권1호
    • /
    • pp.15-29
    • /
    • 2022
  • Concrete-filled steel tubes (CFSTs) are increasingly used as composite sections in structures owing to their excellent load bearing capacity. Therefore, predicting the mechanical behavior of CFST sections under axial compression loading is vital for design purposes. This paper presents the first study on the nonlinear analysis of heated CFSTs with high-strength concrete core containing steel fiber and waste tire rubber under axial compression loading. CFSTs had steel fibers with 0, 1, and 1.5% volume fractions and 0, 5, and 10% rubber particles as sand alternative material. They were subjected to 20, 250, 500, and 750℃ temperatures. Using flow rule and analytical analysis, a model is developed to predict the load bearing capacity of steel tube, and hoop strain-axial strain relationship, and axial stress-volumetric strain relationship of CFSTs. An elastic-plastic analysis method is applied to determine the axial and hoop stresses of the steel tube, considering elastic, yield, and strain hardening stages of steel in its stress-strain curve. The axial stress in the concrete core is determined as the difference between the total experimental axial stress and the axial stress of steel tube obtained from modeling. The results show that steel tube in CFSTs under 750℃ exhibits a higher load bearing contribution compared to those under 20, 250, and 500℃. It is also found that the ratio of load bearing capacity of steel tube at peak point to the load bearing capacity of CFST at peak load is noticeable such that this ratio is in the ranges of 0.21-0.33 and 0.31-0.38 for the CFST specimens with a steel tube thickness of 2 and 3.5 mm, respectively. In addition, after the steel tube yielding, the load bearing capacity of the tube decreases due to the reduction of its axial stiffness and the increase of hoop strain rate, which is in the range of about 20 to 40%.

Bi-2223/Ag 고온 초전도 선재 변형에 따른 입계전류 특성 (Critical Current Properties of Bi-2223/Ag tapes with respect to axial Strain)

  • 하홍수;오상수;하동우;심기덕;김상철;장현만;권영길;류강식
    • 한국전기전자재료학회논문지
    • /
    • 제14권1호
    • /
    • pp.69-73
    • /
    • 2001
  • In this study, we fabricated Bi-2223/Ag high temperature superconducting tapes using PIT(Powder-In-Tube) process to apply the superconducting magnet, cable and etc. It is inevitable to deform the superconducting taps with axial strain for application. Therefore, for the characterization of the strain sensitivity of the superconducting properties, the degradation of Bi-2223/Ag tapes due to axial strain were investigated by measuring the critical current as a function of applied tension strain and external magnetic field. The critical current of Bi-2223/Ag tapes were decreased slightly up to 0.3∼0.4% applied strain but, drastically decreased more than these strains. Superconducting filament cores consisted of brittle ceramic fibers were broken easily by the large strain and current path were decreased simultaneously.

  • PDF

Expanding the classic moment-curvature relation by a new perspective onto its axial strain

  • Petschke, T.;Corres, H.;Ezeberry, J.I.;Perez, A.;Recupero, A.
    • Computers and Concrete
    • /
    • 제11권6호
    • /
    • pp.515-529
    • /
    • 2013
  • The moment-curvature relation for simple bending is a well-studied subject and the classical moment-curvature diagram is commonly found in literature. The influence of axial forces has generally been considered as compression onto symmetrically reinforced cross-sections, thus strain at the reference fiber never has been an issue. However, when dealing with integral structures, which are usually statically indeterminate in different degrees, these concepts are not sufficient. Their horizontal elements are often completely restrained, which, under imposed deformations, leads to moderate compressive or tensile axial forces. The authors propose to analyze conventional beam cross-sections with moment-curvature diagrams considering asymmetrically reinforced cross-sections under combined influence of bending and moderate axial force. In addition a new diagram is introduced that expands the common moment-curvature relation onto the strain variation at the reference fiber. A parametric study presented in this article reveals the significant influence of selected cross-section parameters.

Assessment of stress-strain model for UHPC confined by steel tube stub columns

  • Hoang, An Le;Fehling, Ekkehard
    • Structural Engineering and Mechanics
    • /
    • 제63권3호
    • /
    • pp.371-384
    • /
    • 2017
  • Ultra high performance concrete (UHPC) has recently been applied as an alternative to conventional concrete in construction due to its extremely high compressive and tensile strength, and enhanced durability. However, up to date, there has been insufficient information regarding the confinement behavior of UHPC columns. Therefore, this study aims to perform an assessment of axial stress-strain model for UHPC confined by circular steel tube stub columns. The equations for calculating the confined peak stress and its corresponding strain of confined concrete in existing models suggested by Johansson (2002), Sakino et al. (2004), Han et al. (2005), Hatzigeorgiou (2008) were modified based on the regression analysis of test results in Schneider (2006) in order to increase the prediction accuracy for the case of confined UHPC. Furthermore, a new axial stress-strain model for confined UHPC was developed. To examine the suitability of the modified models and the proposed model for confined UHPC, axial stress-strain curves derived from the proposed models were compared with those obtained from previous test results. After validating the proposed model, an extensive parametric study was undertaken to investigate the effects of diameter-to-thickness ratio, steel yield strength and concrete compressive strength on the complete axial stress-strain curves, the strength and strain enhancement of UHPC confined by circular steel tube stub columns.

탄소섬유쉬트로 횡구속된 콘크리트 공시체의 압축 거동에 관한 연구 (A Study on the Axial Behavior of the Concrete Cylinders Confined by Carbon Fiber Sheets)

  • 황진석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권4호
    • /
    • pp.141-148
    • /
    • 2000
  • Recently the Carbon Fiber Sheet(CFS) is widely used for strengthening damaged RC structures. Strengthening compression members such as column can increase ductility and strength due to the confinement effect. In this experiment, the behavior of concrete cylinders confined by CFS was examined. The confinement pressure is increased linearly as axial stress is increased in low axial stress, and the confinement effect of CFS was rapidly developed after near maximum axial stress, thus axial strength and ductility was improved. As the ratio of CPS is increased, concrete cylinders failed due to local fracture of CFS. The confinement effect of circular section is more efficient than that of rectangular section. And significant improvement of axial strength, axial strain, transverse strain at failure is observed in circular section. This is because in rectangular section the local fracture of CFS near corner may be occured, thus the strain efficiency ratio must be considered for RC structures with CFS.

  • PDF

외부자켓에 의해 보강된 콘크리트 압축시편의 압축변형률 측정 및 보정 (Measuring and Correcting The Compressive Axial Strain of Concrete Cylinders Retrofitted by External Jackets)

  • 최은수;이영근
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권2호통권54호
    • /
    • pp.215-222
    • /
    • 2009
  • 콘크리트 공시편의 외부보강을 위해서 강판과 FRP 자켓을 이용하였다. 기존의 강판 또는 FRP 자켓 보강기법은 보강재와 콘크리트 사이에 접착제를 이용하여 시공하므로 콘크리트와 보강재가 합성거동 하게 된다. 그러나 본 연구에서 사용한 강판 보강기법은 외부압착에 의한 기법으로 강판과 콘크리트가 합성거동을 하지 않는다. 본 연구에서는 비합성거동과 합성거동을 하는 보강된 콘크리트 시편의 압축 변형률의 측정과 이를 보정하는 기법을 제시하였다. 비합성거동의 강판보강 콘크리트 시편의 압축변형률 측정은 강판의 표면에서 변형률을 측정하여 표시할 수 없으며, 시편에 설치하여 측정하는 compressometer를 사용할 수도 없었다. 따라서 시편의 상하단에 두꺼운 판을 설치하여 두 판사이의 변형을 측정한 후. 이를 압축변형률로 변환하였다. 합성 거동을 하는 FRP 보강의 경우는 FRP 튜브 표면에서 측정되는 수직방향의 변형률을 콘크리트의 압축변형률로 사용이 가능하다. 그러나 튜브 표면의 수직변형률은 시편의 부풀음에 의한 인장변형률이 포함되어 있기 때문에 콘크리트의 압축변형률을 추정하기 위해서는 이를 보정하여야 한다. 보정된 압축변형률은 콘크리트 내부에서 측정한 변형률과 기존의 콘크리트 연속체 모델과 비교하였을 때, 만족한 결과를 보였다. 보정 전의 응력-변형률 곡선은 콘크리트의 연성거동 및 에너지 소산능력을 보정 전에 비해 낮게 평가할 위험성이 있다.

철근콘크리트 기둥의 축방향 변형률 평가 (Evaluation of Axial Strains of Reinforced Concrete Columns)

  • 이정윤;김민옥;김형범
    • 콘크리트학회논문집
    • /
    • 제25권1호
    • /
    • pp.19-28
    • /
    • 2013
  • 소성힌지 구역의 축방향변형률의 예측은 지진하중을 받는 철근콘크리트 기둥의 합리적인 연성 평가를 위하여 필요한 항목이다. 축방향변형률은 콘크리트의 유효압축강도를 저하시키고 층간 변위를 크게 할 수 있다. 기존 연구는 주로 소성힌지가 발생하는 보의 축방향변형률 예측에 국한되었지만 횡력을 받는 구조물에서는 저층부 기둥도 소성힌지가 발생한다. 이 논문에서는 기둥 부재에 작용하는 축력의 크기에 따라 변화하는 축방향변형률을 예측할 수 있는 모델과 평가식이 제안되었다. 단면 해석법을 이용하여 하중이력에 따른 축방향변형률의 변화와 철근의 변형률 변화를 고찰한 후, 해석과 실험 결과를 근거로 축방향변형률 예측 모델을 제안하였다. 제안된 모델은 부재 축방향변형률을 3가지 경로(재하, 재하 후 반대하중이 하중이 가해지는 구간, 동일한 부재 회전각에서 반복하중을 받을 구간)로 구분하였다. 이 연구에서 제안된 기둥 부재의 축방향변형률의 계산식은 축력비가 다른 철근콘크리트 기둥의 실제 축방향변형률을 추적하였고, 축력비의 영향을 반영하였다.

Experimental and numerical studies on mechanical behavior of buried pipelines crossing faults

  • Zhang, Dan F.;Bie, Xue M.;Zeng, Xi;Lei, Zhen;Du, Guo F.
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.71-86
    • /
    • 2020
  • This paper presents a study on the mechanical behavior of buried pipelines crossing faults using experimental and numerical methods. A self-made soil-box was used to simulate normal fault, strike-slip fault and oblique slip fault. The effects of some important parameters, including the displacement and type of fault, the buried depth and the diameter of pipe, on the deformation modes and axial strain distribution of the buried pipelines crossing faults was studied in the experiment. Furthermore, a finite element analysis (FEA) model of spring boundary was developed to investigate the performance of the buried pipelines crossing faults, and FEA results were compared with experimental results. It is found that the axial strain distribution of those buried pipelines crossing the normal fault and the oblique fault is asymmetrical along the fault plane and that of buried pipelines crossing the strike-slip fault is approximately symmetrical. Additionally, the axial peak strain appears near both sides of the fault and increases with increasing fault displacement. Moreover, the axial strain of the pipeline decreases with decreasing buried depth or increasing ratios of pipe diameter to pipe wall thickness. Compared with the normal fault and the strike-slip fault, the oblique fault is the most harmful to pipelines. Based on the accuracy of the model, the regression equations of the axial distance from the peak axial strain position of the pipeline to the fault under the effects of buried depth, pipe diameter, wall thickness and fault displacement were given.