• Title/Summary/Keyword: axial pressure test

Search Result 220, Processing Time 0.032 seconds

Computational and Experimental Study of Effects of Guide Vanes and Tip Clearances on Performances of Axial flow Fans (선박용 송풍기의 날개 끝 간격과 정익이 성능에 미치는 영향에 대한 전산 유체 해석)

  • Lee, Sung-Su;Kim, Hak-Sun;Nam, Kwang-Hyun;Hong, Jae-Ik;Chun, Seung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.24-32
    • /
    • 2004
  • The effects of guide vanes and tip clearances on the characteristics nf axial flow fans are investigated both computationally and experimentally. Performance test of fans carried out in full scale shows considerable effects of tip clearance between rotor tip and duct on the characteristics of fans. The tested results are compared with the computation based on the finite volume method to solve the Navier-Stoke equations with $textsc{k}$-$\varepsilon$ turbulence model. The comparison shows good agreements between experimental and computational results. In addition, the effects of shape of guide vanes are numerically studied. The results show that increased volume of separated region around the guide vane reduces the recovery of tangential component of kinetic energy in the wake, resulting in loss of efficiency

Size Effect of Axial Compressive Strength of CFRP Confined Concrete Cylinders

  • Akogbe, Romuald-Kokou;Liang, Meng;Wu, Zhi-Min
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • The main objective of this investigation is to study size effect on compressive strength of CFRP confined concrete cylinders subjected to axial compressive loading. In total 24 concrete cylinders with different sizes were tested, small specimens with a diameter of 100 mm and a height of 200 mm, medium specimens with a diameter of 200 mm and a height of 400 mm, and big specimens with a diameter of 300 mm and a height of 600 mm. The lateral confining pressure of each specimen is the same and from that hypothesis the small specimens were confined with one layer of CFRP, medium and big specimens were performed by two and three layers of CFRP respectively. Test results indicate a significant enhancement in compressive strength for all confined specimens, and moreover, the compressive strengths of small and medium specimens are almost the same while a bit lower for big specimens. These results permit to conclude that there is no size effect on compressive strength of confined specimens regardless of cylinder dimension.

Seismic performance of RC columns with full resistance spot welding stirrups

  • Yu, Yunlong;Dang, Zhaohui;Yang, Yong;Chen, Yang;Li, Hui
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.543-554
    • /
    • 2020
  • This paper aims to investigate the seismic performance of RC short columns and long columns with welding stirrups. Through the low-cyclic horizontal loading test of specimens, the seismic performance indexes such as failure modes, hysteretic curve, skeleton curve, ductility, energy dissipation capacity, stiffness degradation and strength degradation were emphatically analyzed. Furthermore, the effects of shear span ratio, stirrups ratio and axial compression ratio on the performance of specimens were studied. The results showed that the seismic performance of the RC short columns with welding stirrups were basically the same as that of the RC short columns with traditional stirrups, but the seismic performance of RC long columns with welding stirrups was better than that of RC long columns with traditional stirrups. The seismic performance of RC short columns and long columns with welding stirrups could be improved by increasing stirrup ratio and shear span ratio and reducing axial pressure ratio. Moreover, the welding stirrup have the advantages of steel saving, industrialization and standardization production, convenient construction, and reducing time, which indicated that the welding stirrups could be applied in practical engineering.

Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading

  • Abedini, Masoud;Zhang, Chunwei
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.389-408
    • /
    • 2022
  • Residual capacity is defined as the load carrying capacity of an RC column after undergoing severe damage. Evaluation of residual capacity of RC columns is necessary to avoid damage initiation in RC structures. The central aspect of the current research is to propose an empirical formula to estimate the residual capacity of RC columns after undergoing severe damage. This formula facilitates decision making of whether a replacement or a repair of the damaged column is adequate for further use. Available literature mainly focused on the simulation of explosion loads by using simplified pressure time histories to develop residual capacity of RC columns and rarely simulated the actual explosive. Therefore, there is a gap in the literature concerning general relation between blast damage of columns with different explosive loading conditions for a reliable and quick evaluation of column behavior subjected to blast loading. In this paper, the Arbitrary Lagrangian Eulerian (ALE) technique is implemented to simulate high fidelity blast pressure propagations. LS-DYNA software is utilized to solve the finite element (FE) model. The FE model is validated against the practical blast tests, and outcomes are in good agreement with test results. Multivariate linear regression (MLR) method is utilized to derive an analytical formula. The analytical formula predicts the residual capacity of RC columns as functions of structural element parameters. Based on intensive numerical simulation data, it is found that column depth, longitudinal reinforcement ratio, concrete strength and column width have significant effects on the residual axial load carrying capacity of reinforced concrete column under blast loads. Increasing column depth and longitudinal reinforcement ratio that provides better confinement to concrete are very effective in the residual capacity of RC column subjected to blast loads. Data obtained with this study can broaden the knowledge of structural response to blast and improve FE models to simulate the blast performance of concrete structures.

The Vibration Effect by Induced Pulsation Pressure to the Fatigue Crack of the Dampener Fitting Welding Zone (항공기용 유압 펌프의 맥동 압력에 의한 감쇄기 용접부위 균열 개선 연구)

  • Shin, Jae Hyuk;Kim, Tae Hwan;Kang, Gu Heon;Ha, Do Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.677-687
    • /
    • 2017
  • Aircraft can often be exposed to a variety of environments and vibrations such as engine, hydraulic pump, aerodynamic force. These may cause cracking and destruction of the mechanical structure and sub-components by high-cycle fatigue. The axial piston type pump which is usually applied to the aircraft hydraulic pump can be necessarily accompanied by the fluid pulsation by continuous rotation of the axial piston. The fatigue crack was identified at the dampener fitting welding zone to prevent vibration damping during the running of aircraft equipped with this type of pulsation hydraulic pump. In order to understand the root cause of this matter, fracture and component analyses were carried out and also integral type dampener fitting was applied to prevent recurrence of the crack as a subject of design improvements. Structural integrity stress analysis, fatigue analysis, qualification test and aircraft system equipped test was conducted to verify the design validity in application to integral type dampener fitting. The test results were sufficiently satisfactory with the demand lifetime of the material from the various types of test as conducted and the subject of design improvement in this study could be objectively evaluated that shall be applied to the operational aircraft.

Combustion Test and Performance Analysis of Fuel Rich Gas Generator (농후 연소 가스발생기의 연소실험과 성능해석)

  • Kwon, Sun-Tak;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.92-97
    • /
    • 2005
  • A series of combustion test was done to verify the optimization result of a gas generator for a 10 ton thrust liquid rocket engine. An injector element is F-O-F impinging type injector and the test was conducted with kerosene/LOX propellants. Test results of combustion temperature and pressure show a very good agreement with optimal design result and verify that the design method was properly established. And turbulence ring revealed its effectiveness in enhancing combustion gas mixing and temperature difference in the radial direction showed only less than 15K. Also turbulence ring induced only 3.2% pressure loss in the combustion chamber, which is far less than conventional level observed in a gas turbine engine. Axial temperature distribution also shows that turbulence ring could effectively reduce about 10% or more in gas generator length if its location is properly selected.

Development of a roller supported piston type loading platen reducing the frictional restraint along the interfaces between the specimen and platens under the biaxial loading condition (이축압축 조건에서 실험체/재하판 경계면상의 마찰저항 감소를 위한 롤러 지지된 피스톤 형태의 하중재하판의 개발)

  • SaGong, Myung;Kim, Se-Chyul;Lee, J.S.;Park, Du-Hee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.303-312
    • /
    • 2008
  • Multi-axial compression tests have been frequently adopted for the evaluation of material properties of rock cores and rock fracture model tests. Special care has to be applied on the boundary condition between the specimen and loading platen to draw the precise test results of the multi-axial compression tests. With the use of dry steel platen, the stress rotation will occur, due to the frictional restraint from the boundary between the specimen and loading platen. The restraint will deviate the expected test results under the conditions of the given external pressures. Various methods have been applied to reduce the side restraint along the specimen/loading platen interface. The steel brush type loading platen is one example of the attempts. In this paper, a new type of loading platen is introduced to overcome the limitation caused by the use of the brush type loading platen, which requires some internal space for the installation of the brushes. The new type of loading platen, roller supported steel piston type loading platen. is constituted of shot steel pistons which have sufficient stiffness to deliver the external pressure and the shaft type roller installed at the rear of the pistons. The pistons are designed to follow the local deformation of the specimens. In this paper, structural details of the loading platen are presented and frictional and biaxial compression tests results are shown to verify the required functions of the loading platen. Furthermore, calibration process is followed by a comparison between the test results and numerical analyses.

  • PDF

Analysis and Performance Test for the Fan of a Wide Area Sprayer of Livestock Farm (축산 농가용 광역방제기 팬의 성능실험 및 분석)

  • Hong, J.T.;Min, B.R.;Kim, D.W.;Seo, K.W.;Kim, W.;Lee, S.K.;Kim, S.Y.;Lee, D.W.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.2
    • /
    • pp.105-112
    • /
    • 2007
  • This research was carried out to test and analyse the capability of a fan for development of a sprayer in actual livestock farm. A fan was designed and made to be able to spray agricultural chemicals within 140mm in a maximum scattering range and 100m in an effective scattering range. Accordingly, its' flow rate was $3,600\;m^3/min$, and static pressure was 100 mmAq for a wide area sprayer to be sprayed widely and far. Fan performance, which was given $600\;m^3/min$ flow rate and 500 mmAq total pressure, was tested fur basic experiment. As the result, the axial power showed minimum error, which be designed to keep the fan performance. And power efficiency was the maximum. Sound level was 92.1dB that wasn't enough to environmental standard. If we take the sealed place into consideration, sound level is suitable for environmental standard.

  • PDF

An analytical study on the structural behavior of H shape column base plates under axial loads and moments (축력과 모멘트를 받는 H형강 주각부의 거동에 관한 해석적 연구)

  • Kim, Jeong Hyun;Lee, Seung Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.217-225
    • /
    • 2005
  • The purpose of this study is to investigate the behavior of H-shape column base plates subjected to axial loads and moments. In this study, the behavior of H-shape column base plates is investigated using finite element analysis method and an analytical modelingof the base plates is obtained. The variations of six test specimens include ratiosof axial load, sizes of anchor bolts, and thicknesses of base plates. The experimental results are compared with the results from the finite element analyses and those of the analytical modeling. Bearing pressures of base plates from the finite element analyses are compared with those that are assumed in the design of the base plates. From the results of the research, it is observed that the initial stiffness and yield strengths in the analytical study are very similar to the experimental results. And bearing pressures are concentrated under column section with thin base plates.

Heat transfer characteristics around a circular combustion chamber of kerosene fan heater (석유 팬 히터의 연소실 주변 열전달 특성)

  • Kim, Jang-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.551-561
    • /
    • 1998
  • This paper was studied to understand the characteristics of heat transfer coefficients and surface temperature distributions around a circular combustion chamber within the heat-intercept duct of kerosene fan heater. The experiment was carried out in the heat-intercept duct of kerosene fan heater attached to the blow-down-type subsonic wind tunnel with a test section of 240 mm * 240 mm * 1200 mm. The purpose of this paper was to obtain the basic data related with normal combustion for new design from conventional kerosene fan heater, and to investigate the effect of surface temperature, local and mean heat transfer coefficients versus flow-rate of convection axial fan according to the variations of heat release conditions from kerosene fan heater during normal combustion. Consequently it was found that (i) the revolution of convection axial fan during combustion had a smaller value than that of non-combustion because of the thermal resistance due to the high temperature in the heat-intercept duct, (ii) the pressure ratio P$_{2}$/P$_{1}$ had a comparatively constant value of 0.844 according to the revolution increase of turbo fan and the heating performance of kerosene fan heater had a range of 1,494 ~ 3,852 kcal/hr, (iii) the local heat transfer coefficient around a circular combustion chamber had a comparatively larger scale in the range of 315 deg. < .theta. < 45 deg. than that in the range of 90 deg. < .theta. < 270 deg. as a result of heat transfer difference between front and back of a circular combustion chamber, and (iv) the mean heat transfer coefficient around a circular combustion chamber increased linearly like a H$_{m}$=95.196Q+104.019 in condition of high heat release according to the increase of flow-rate of axial fan.n.