• Title/Summary/Keyword: axial loading capacity

Search Result 301, Processing Time 0.02 seconds

Seismic performance of ductile and non-ductile reinforced concrete columns under varied axial compression

  • Safdar-Naveed Amini;Aditya-Singh Rajput
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.427-441
    • /
    • 2024
  • Large-scale cantilever reinforced concrete (RC) columns with footing/stub were examined to determine their seismic response under a quasi-static increasing-magnitude cyclic lateral loading. Three-dimensional (3D) numerical models of RC columns with ductile and non-ductile reinforcement arrangements were developed in a Finite Element (FE) software, i.e., ABAQUS, to corroborate them with the experimental study conducted by the author. Both simulated models were validated with the experimental results in all respects, and the theoretical axial capacity of columns under concentric axial load (P0) was calculated. Subsequently, a detailed parametric study was conducted by adopting the force and reinforcement variables. These variables include axial compression ratios (ACR) varying from 0.35P0 to 0.7P0 and the amount of lateral reinforcements taken as 0.33% and 1.31% representing the non-ductile and ductile columns, respectively. This research outcome conclusively quantifies the combined effect of ACR levels and lateral reinforcement spacing on the flexural response and ductility characteristics of RC columns. The comparative analysis reveals that increased ACR levels resulted in a severe reduction in strength, deformability and ductility characteristics of both ductile and non-ductile columns. Structural response of ductile columns at higher ACR levels was comparable to the non-ductile columns, nullifying the beneficial effects of ductile design provisions. Higher ACR levels caused decline in pre-peak and post-peak response trajectories, leading to an earlier attainment of peak response at lower drift levels.

Compression Test for Prefabricated Composite Columns Using High-Strength Steel Angles (고강도 앵글을 적용한 선조립 합성기둥의 압축 실험)

  • Hwang, Hyeon-Jong;Eom, Tae-Sung;Park, Hong-Gun;Lee, Chang-Nam;Kim, Hyoung-Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.361-369
    • /
    • 2012
  • In this study, prefabricated composite columns using high-strength angles (PSRC composite column) was studied. Concentric axial loading tests were performed for 2/3 scale PSRC specimens and an conventional SRC specimen with H-steel at the center of the cross-section. The test parameters were the steel ratio of angles and the spacing of lateral re-bars. The test results showed that by placing the angles at the corners of the cross-section for confinement with provided for the core concrete, the PSRC column specimens exhibited greater load-carrying capacity and deformation capacity than those of the conventional SRC column. The axial load-carrying capacity of the PSRC columns was greater than the prediction by KBC 2009. Using existing stress-strain relationship of confined concrete, the axial load-deformation relationship of the specimens were predicted. The numerical predictions correlated well with the test results in terms of initial stiffness, load-carrying capacity, and post-peak strength- and stiffness-degradations.

Experimental study on the seismic performance of concrete filled steel tubular laced columns

  • Huang, Zhi;Jiang, Li-Zhong;Chen, Y. Frank;Luo, Yao;Zhou, Wang-Bao
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.719-731
    • /
    • 2018
  • Concrete filled steel tubular (CFST) laced columns have been widely used in high rise buildings in China. Compared to solid-web columns, this type of columns has a larger cross-section with less weight. In this paper, four concrete filled steel tubular laced columns consisting of 4 main steel-concrete tubes were tested under cyclic loading. Hysteresis and failure mechanisms were studied based on the results from the lateral cyclic loading tests. The influence of each design parameter on restoring forces was investigated, including axial compression ratio, slenderness ratio, and the size of lacing tubes. The test results show that all specimens fail in compression-bending-shear and/or compression-bending mode. Overall, the hysteresis curves appear in a full bow shape, indicating that the laced columns have a good seismic performance. The bearing capacity of the columns decreases with the increasing slenderness ratio, while increases with an increasing axial compression ratio. For the columns with a smaller axial compression ratio (< 0.3), their ductility is increased. Furthermore, with the increasing slenderness ratio, the yield displacement increases, the bending failure characteristic is more obvious, and the hysteretic loops become stouter. The results obtained from the numerical analyses were compared with the experimental results. It was found that the numerical analysis results agree well with the experimental results.

Experimental and numerical investigation of strengthened deficient steel SHS columns under axial compressive loads

  • Shahraki, Mehdi;Sohrabi, Mohammad Reza;Azizyan, Gholam Reza;Narmashiri, Kambiz
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.207-217
    • /
    • 2018
  • In past years, numerous problems have vexed engineers with regard to buckling, corrosion, bending, and overloading in damaged steel structures. This article sets out to investigate the possible effects of carbon fiber reinforced polymer (CFRP) and steel plates for retrofitting deficient steel square hollow section (SHS) columns. The effects of axial loading, stiffness, axial displacement, the position and shape of deficient region on the length of steel SHS columns, and slenderness ratio are examined through a detailed parametric study. A total of 14 specimens was tested for failure under axial compression in a laboratory and simulated using finite element (FE) analysis based on a numerical approach. The results indicate that the application of CFRP sheets and steel plates also caused a reduction in stress in the damaged region and prevented or retarded local deformation around the deficiency. The findings showed that a deficiency leads to reduced load-carrying capacity of steel SHS columns and the retrofitting method is responsible for the increase in the load-bearing capacity of the steel columns. Finally, this research showed that the CFRP performed better than steel plates in compensating the axial force caused by the cross-section reduction due to the problems associated with the use of steel plates, such as in welding, increased weight, thermal stress around the welding location, and the possibility of creating another deficiency by welding.

Damage Index of Steel Members under Severe Cyclic Loading

  • Park, Yeon-soo;Han, Suk-yeol;Suh, Byoung-chal;Jeon, Dong-ho;Park, Sun-joon
    • Computational Structural Engineering : An International Journal
    • /
    • v.3 no.1
    • /
    • pp.9-17
    • /
    • 2003
  • This paper aims at investigating the damage process of steel members leading to the failure under strong repeated loading, proposing the damage index using various factors related to the damage, and developing the analysis method for evaluating the damage state. Cantilever-type steel members were analyzed under uniaxial load and combined with a constant axial load, considering a horizontal displacement history. In analyzing the models, loading patterns and steel types (SS400, SM570, Posten80) were considered as main parameters. From the analysis results, the effects of parameter on the failures mode, the deformation capacity, the damage process are also discussed. Each failure process was compared as steel types. Consequently, the failure of steel members under strong repeated loading was determined by loading. Especially it was seen that the state of the failure is closely related to the local strain.

  • PDF

The Effect of Out-of-Plane Load on the In-Plane Shear Capacity of Reinforcement Concrete Shear Wall (철근 콘크리트 전단벽에서 면외 하중이 면내 전단성능에 미치는 영향)

  • Shin, Hye Min;Park, Jun Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.77-83
    • /
    • 2024
  • The design shear strength equations of RC shear walls have been developed based on their performance under in-plane (IP) loads, thereby failing to account for the potential performance degradation of shear strength when subjected to simultaneous out-of-plane (OOP) loading. Most of the previous experimental studies on RC walls have been conducted in one direction under quasi-static conditions, and due to the difficulty in experimental planning, there is a lack of research on cyclic loading and results under multi-axial loading conditions. During an earthquake, shear walls may yield earlier than their design strength or fail unexpectedly when subjected to multi-directional forces, deviating from their intended failure mode. In this paper, nonlinear analysis in finite element models was performed based on the results of cyclic loading experiments on reinforced concrete shear walls of auxiliary buildings. To investigate the reduction trend in IP shear capacity concerning the OOP load ratio, parametric analysis was conducted using the shear wall FEM. The analysis results showed that as the magnitude of the OOP load increased, the IP strength decreased, with a more significant effect observed as the size of the opening increased. Thus, the necessity to incorporate this strength reduction as a factor for the OOP load effect in the wall design strength equation should be discussed by performing various parametric studies.

A Study on Axial Force - Moment Capacity of High-Strength Concrete Tied Column Sections (고강도 콘크리트 기둥단면의 축력-모멘트 강도에 관한 연구)

  • 박해균;박동규;박영식;손영현;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.300-305
    • /
    • 1996
  • Reinforced concrete column is an effective structural element to take advantage of high strength concrete. This paper presents an experimental and analytical strength of high strength concrete rectangular tied column sections under eccentric loading. The test variables are concrete strength, steel ratios, slenderness and eccentricity. The analytical results of the ACI's rectangular stress block, Zia's modified rectangular stress block, and a trapezoid block are compared with experimentally obtained data. It may be concluded that the trapezoid stress block provided the most reasonable column section capacities for high strength concrete columns.

  • PDF

Seismic Consideration of Reinforced Concrete Wall Section

  • Kim, Jang-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.210-215
    • /
    • 2003
  • Seismic capacity of reinforced concrete bearing wall subjected to high axial loading and moment can be attained by improving the deformability of compression zone or by reducing the neutral axis depth. For this two existing options for ductility enhancement were reviewed and improved to conveniently apply to the seismic improvement of compression zone of the wall: (1) end confinement of concrete due to transverse steel and (2) boundary element.

  • PDF

Axial Load Test on Rectangular CFT Columns using High-Strength Steel and Slender Section (세장 단면의 고강도 강관을 적용한 각형 CFT 기둥의 압축실험)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.219-229
    • /
    • 2015
  • An experimental study was performed for thin-walled rectangular concrete-filled tubular (CFT) columns. The present study mainly focused on evaluation of the axial load-carrying capacity of concrete-filled tubular columns using high-strength steel and slender section. The test parameters were width-to-thickness ratio, concrete strength, steel yield strength, and the use of stiffeners. Five specimens were tested under monotonic axial loading. Although elastic local buckling occurred in the slender-section specimens with high-strength steel, the specimens exhibited considerable post-buckling reserve. The test results also satisfied the predictions of a current design code. The specimens strengthened with vertical stiffeners exhibited improved strength and ductility when compared with the un-stiffened specimens.

Long-Term Behavior of CFT Column under Central Axial Load (중심축 하중을 받는 CFT 기둥의 장기거동에 관한 연구)

  • 권승희;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.77-85
    • /
    • 2001
  • Concrete filled steel tubular (CFT) columns are becoming popular in structural applications. The increased popularity comes from their excellent structural properties such as high strength, high ductility, and large energy absorption capacity. However, the disadvantage feature of CFT column is the difficulty in predicting its time dependant characteristic (i.e., creep and shrinkage) of inner concrete. The time dependent behavior of CFT column can cause serious serviceability problems. Therefore, it is necessary to investigate the long term behavior of CFT column. This paper presents analytical and experimental studies on long-term behavior of CFT-column under a central axial loading. Two loading cases are considered in the research; (1) the load applied only at the inner core concrete of CFT-column and (2) the load applied simultaneously on both concrete and steel tube. Analysis method using the bond strength model is proposed and conclusions on long-term properties of CFT-column can be derived from the results.