• Title/Summary/Keyword: axial load effect

Search Result 543, Processing Time 0.024 seconds

Experimental Evaluation of Seismic Performance of Laminated Elastomeric Bearing and Lead-Rubber Bearing (적층고무베어링과 납-고무베어링의 내진 성능에 관한 실험적 평가)

  • 김대곤;이상훈;김대영;박칠림
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.53-62
    • /
    • 1998
  • Experimental studies for the laminated elastomeric bearing and the lead-rubber bearing, those are often used to improve the seismic capacity of the structures recently, are conducted to evaluate the seismic capacity of the bearings. The shear stiffness of the bearings decreases as the shear strain amplitude or the constant axial load level increases, but not sensitive to the strain rates effect. Bearings are strong for the axial compression but weak for the axial tension.

  • PDF

Analysis of concrete-filled steel tubular columns with "T" shaped cross section (CFTTS)

  • Wang, Qin-Ting;Chang, Xu
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.41-55
    • /
    • 2013
  • This paper presents a numerical study of axially loaded concrete-filled steel tubular columns with "T" shaped cross section (CFTTS) based on the ABAQUS standard solver. Two types of columns with "T" shaped cross section, the common concrete-filled steel tubular columns with "T" shaped cross section (CCFTTS) and the double concrete-filled steel tubular columns with "T" shaped cross section (DCFTTS), are discussed. The failure modes, confining effects and load-displacement curves are analyzed. The numerical results indicate that both have the similar failure mode that the steel tubes are only outward buckling on all columns' faces. It is found that DCFTTS columns have higher axial capacities than CCFTTS ones duo to the steel tube of DCFTTS columns can plays more significant confining effect on concrete. A parametric study, including influence of tube thickness, concrete strength and friction coefficient of tube-concrete interface on the axial capacities is also carried out. Simplified formulae were also proposed based on this study.

An Investigation into the effect of friction in the split hopkinson pressure bar (SHPB) test by numerical experiments (수치해석을 이용한 SHPB 시험의 마찰영향 분석)

  • Cha, Sung-Hoon;Shin, Myoung-Soo;Shin, Hyun-Ho;Kim, Jong-Bong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.204-209
    • /
    • 2008
  • The interest in the mechanical behavior of materials at high strain rates has increased in recent years, and by now it is well known that mechanical properties can be strongly influenced by the speed of applied load. The split Hopkinson pressure bar (SHPB) has been widely used to determine mechanical properties of materials at high loading rates. However, to ensure test reliability, measurement error source must be accounted for and eliminated. During experiment, the specimens were located between the incident and the transmit bar. The presence of contact frictions between the test bars and specimen may cause errors. In this work, numerical experiments were carried out to investigate the effect of friction on test results. In SHPB test, the measured stress by the transmitted bar is assumed to be flow stress of the test specimen. Through the numerical experiments, however, it is shown that the measured stress by the transmit bar is axial stress components. When, the contact surface is frictionless, the flow stress and the axial stress of the specimen are about the same. When the contact surface is not frictionless, however, the flow stress and the axial stress are not the same anymore. Therefore, the measured stress by the transmitted bar is not flow stress. The effect of friction on the difference between flow stress and axial stress is investigated.

  • PDF

Effect of spiral spacing on axial compressive behavior of square reinforced concrete filled steel tube (RCFST) columns

  • Qiao, Qiyun;Zhang, Wenwen;Mou, Ben;Cao, Wanlin
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.559-573
    • /
    • 2019
  • Spiral spacing effect on axial compressive behavior of reinforced concrete filled steel tube (RCFST) stub column is experimentally investigated in this paper. A total of twenty specimens including sixteen square RCFST columns and four benchmarked conventional square concrete filled steel tube (CFST) columns are fabricated and tested. Test variables include spiral spacing (spiral ratio) and concrete strength. The failure modes, load versus displacement curves, compressive rigidity, axial compressive strength, and ductility of the specimens are obtained and analyzed. Especially, the effect of spiral spacing on axial compressive strength and ductility is investigated and discussed in detail. Test results show that heavily arranged spirals considerably increase the ultimate compressive strength but lightly arranged spirals have no obvious effect on the ultimate strength. In practical design, the effect of spirals on RCFST column strength should be considered only when spirals are heavily arranged. Spiral spacing has a considerable effect on increasing the post-peak ductility of RCFST columns. Decreasing of the spiral spacing considerably increases the post-peak ductility of the RCFSTs. When the concrete strength increases, ultimate strength increases but the ductility decreases, due to the brittleness of the higher strength concrete. Arranging spirals, even with a rather small amount of spirals, is an economical and easy solution for improving the ductility of RCFST columns with high-strength concrete. Ultimate compressive strengths of the columns are calculated according to the codes EC4 (2004), GB 50936 (2014), AIJ (2008), and ACI 318 (2014). The ultimate strength of RCFST stub columns can be most precisely evaluated using standard GB 50936 (2014) considering the effect of spiral confinement on core concrete.

Effect of flexure-extension coupling on the elastic instability of a composite laminate plate

  • H. Mataich;A. El Amrani;J. El Mekkaoui;B. El Amrani
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.391-401
    • /
    • 2024
  • The present study focuses on the effect of extension-bending coupling on the elastic stability (buckling) of laminated composite plates. These plates will be loaded under uni-axial or bi-axial in-plane mechanical loads, especially in the orthotropic or anti-symmetric cross-angle cases. The main objective is to find a limit where we can approximate the elastic stability behavior of angularly crossed anti-symmetric plates by the simple behavior of specially orthotropic plates. The contribution of my present study is to predict the explicit effect of extension-flexion coupling on the elastic stability of this type of panel. Critically, a parametric study is carried out, involving the search for the critical buckling load as a function of deformation mode, aspect ratio, plate anisotropy ratio and finally the study of the effect of lamination angle and number of layers on the contribution of extension-flexure coupling in terms of plate buckling stability. We use first-order shear deformation theory (FSDT) with a correction factor of 5/6. Simply supported conditions along the four boundaries are adopted where we can develop closed-form analytical solutions obtained by a Navier development.

Effect of Wire Bracing to Snow Load Acting on Vinyl House Frame (적설하중이 작용하는 비닐하우스 골조에 대한 강선보강효과)

  • Jung, Dong-Jo;Teng, Chhay
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.12 no.3
    • /
    • pp.27-34
    • /
    • 2010
  • Unbraced vinyl house frame that is economically installed is certainly easy to collapse under the influence of excess snow load. To make it more cheaply in putting up as well as more efficiently in withstanding the applied snow load, it is essential to insert additional bracing into the existing unbraced vinyl house frame. On the other hand, there are varieties of possible bracing shapes that can be formed. However, their efficiencies are different. Therefore, it is important to identify the most effective bracing shape. In this study, 2 different kinds of bracing shapes, horizontal and inclined bracing, are used to additionally install in the ordinary single frames in order to show the effect of the bracing resisting the applied snow load and compare the bending moment, axial force, combined stress and vertical displacement of the vinyl house frame.

Effect of loading rate on mechanical behavior of SRC shearwalls

  • Esaki, Fumiya;Ono, Masayuki
    • Steel and Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.201-212
    • /
    • 2001
  • In order to investigate the effect of the loading rate on the mechanical behavior of SRC shearwalls, we conducted the lateral loading tests on the 1/3 scale model shearwalls whose edge columns were reinforced by H-shaped steel. The specimens were subjected to the reversed cyclic lateral load under a variable axial load. The two types of loading rate, 0.01 cm/sec for the static loading and 1 cm/sec for the dynamic loading were adopted. The failure mode in all specimens was the sliding shear of the in-filled wall panel. The edge columns did not fail in shear. The initial lateral stiffness and lateral load carrying capacity of the shearwalls subjected to the dynamic loading were about 10% larger than those subjected to the static loading. The effects of the arrangement of the H-shaped steel on the lateral load carrying capacity and the lateral load-displacement hysteresis response were not significant.

Shear Behavior of Web Element in PSC Beams Incorporated with Arch Action (아치작용을 고려한 PSC보의 복부전단거동)

  • Jeong, Je Pyong;Shin, Geun Ock;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.85-92
    • /
    • 2015
  • It is well known that axial tension decreases the shear strength of RC & PSC beams without transverse reinforcement, and axial compression increases the shear resistance. What is perhaps not very well understood is how much the shear resistance capacity is influenced by axial load. RC beams without shear reinforcement subjected to large axial compression and shear may fail in a very brittle manner at the instance of first diagonal cracking. As a result, a conservative approach should be used for such members. According to the ACI Code, the shear strength in web is calculated by effect of axial force and the vertical force in the stirrups calculated by $45^{\circ}$ truss model. This study was performed to examine the effect of axial force in reinforced concrete beams by nonlinear FEM program (ATENA-2D).

Upper Bound Analysis of Dynamic Buckling Phenomenon of Circular Tubes Considering Strain Rate Effect (변형률 속도를 고려한 원형 튜브의 동적 좌굴 현상의 상계 해석에 관한 연구)

  • Park, Chung-Hee;Ko, Youn-Ki;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.711-716
    • /
    • 2008
  • A circular tube undergoes bucking behavior when it is subjected to axial loading. An upper bound analysis can be an attractive approach to predict the buckling load and energy absorption efficiently. The upper bound analysis obtains the load or energy absorption by means of assumption of the kinematically admissible velocity fields. In order to obtain an accurate solution, kinematically admissible velocity fields should be defined by considering many factors such as geometrical parameters, dynamic effect, etc. In this study, experiments and finite element analyses are carried out for circular tubes with various dimensions and loading conditions. As a result, the kinematically admissible velocity field is newly proposed in order to consider various dimensions and the strain rate effect of material. The upper bound analysis with the suggested velocity field accurately estimates the mean load and energy absorption obtained from results of experiment and finite element analysis.

  • PDF

An analysis of torsional flange-upsetting process based on slab method (슬래브법을 이용한 회전 다이 플랜지 업세팅 공정 해석)

  • Jae-Hoon Park
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.29-34
    • /
    • 2024
  • This study intends to reduce forming load by adding die rotation to flange-upsetting process. Materials arc formed by the compression and rotational torque which are accrued from rotation of the lower die accompanied by axial compression of the punch. For the theoretic analysis of flange-upsetting process using rotation die, slab method was used. Furthermore, for the verification of the theoretic analysis results, FEM simulation using DEFORM 3D a commercial software was done, and through the model material experiment using Prasticine, the results were compared and reviewed. Flange-upsetting process using rotation die shows reduced forming load compared with process without die rotation and demonstrates uniform distribution of strain. And as for the effect of the reduction of forming load, the less the aspect ratio(h0/d0) and the greater friction coefficient, the greater effect is. With increase in die rotation velocity, the effect of forming load reduction also increases little by little, but its effect on forming load reduction is very negligible compared with other forming parameters. Theoretic analysis results and simulation results coincided pretty well. The flange-upsetting process using die rotation are evaluated as useful process that can produce reduction of forming load and uniform strain.