• Title/Summary/Keyword: axial force variation

Search Result 98, Processing Time 0.027 seconds

Crack Opening Area Assessment of Circumferential Though Wall Crack in a Pipe Subjected to Tension and Bending (인장과 굽힘을 받는 배관의 원주방향 관통균열 개구면적 평가)

  • Kim, Sang-Cheol;Kim, Maan-Won
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.61-66
    • /
    • 2008
  • It is important to calculate the exact crack opening area in the cracked pipe subjected to axial force and bending moment. Among many solutions for obtaining the crack opening displacement, Paris-Tada's expression, which is derived from energy method, is open used in fracture analysis for piping crack problems because of its simplicity. But Paris-Tada's equation has conservativeness when radius over thickness ratio(R/t) is ten or less, for it is based on the stress intensity factor solution having a compliance function derived from a simple shell theory. In this paper we derived a new expression using a different stress intensity factor solution which is able to consider the variation of compliance through wall thickness in a cracked pipe. Conservativeness of both equations was examined and compared to finite element analysis results. Conservativeness of the new equation is decreased when R/t > 10 and increased slightly when R/t < 10 compared with Paris-Tada's. But Both equations were highly conservative when R/t < 10 compared with finite element analysis results.

Variation of Paraspinal Muscle Forces according to the Lumbar Motion Segment Fusion during Upright Stance Posture (직립상태 시 요추 운동분절의 유합에 따른 척추주변 근력의 변화)

  • Kim, Young-Eun;Choi, Hae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.130-136
    • /
    • 2010
  • For stability analysis of the lumbar spine, the hypothesis presented is that the disc has stress sensors driving feedback mechanism, which could react to the imposed loads by adjusting the contraction of the muscles. Fusion in the motion segment of the lumbar spinal column is believed to alter the stability of the spinal column. To identify this effect finite element (FE) models combined with optimization technique was applied and quantify the role of each muscle and reaction forces in the spinal column with respect to the fusion level. The musculoskeletal FE model was consisted with detailed whole lumbar spine, pelvis, sacrum, coccyx and simplified trunk model. Vertebral body and pelvis were modeled as a rigid body and the rib cage was constructed with rigid truss element for the computational efficiency. Spinal fusion model was applied to L3-L4, L4-L5, L5-S1 (single level) and L3-L5 (two levels) segments. Muscle architecture with 46 local muscles was used as acting directions. Minimization of the nucleus pressure deviation and annulus fiber average axial stress deviation was selected for cost function. As a result, spinal fusion produced reaction changes at each motion segment as well as contribution of each muscle. Longissimus thoracis and psoas major muscle showed dramatic changes for the cases of L5-S1 and L3-L5 level fusion. Muscle force change at each muscle also generated relatively high nucleus pressure not only at the adjacent level but at another level, which can explain disc degeneration pattern observed in clinical study.

Multi-condition optimization and experimental verification of impeller for a marine centrifugal pump

  • Wang, Kai;Luo, Guangzhao;Li, Yu;Xia, Ruichao;Liu, Houlin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.71-84
    • /
    • 2020
  • In order to improve the performance of marine centrifugal pump, a centrifugal pump whose specific speed is 66.7 was selected for the research. Outlet diameter D2, outlet width b2, blade outlet angle β2, blade wrap φ and blade number z of the impeller were chosen as the variables. The maximum weighted average efficiency and the minimum vibration intensity at the base were calculated as objectives. Based on the Latin Hypercube method, the impeller was numerically optimized. The numerical results show that after optimization, the amplitudes of pressure fluctuation on the main frequency at different monitoring points decrease in varying degrees. The radial force on impeller decreases obviously under off-design flow rates and is more symmetrical during the operation of the pump. The variation of the axial force is relatively small, which has no obvious relationship with the rotating angle of the impeller. The energy performance and vibration experiment was performed for verifying. The test results show that the weighted average efficiency under 0.8Qd, 1.0Qd and 1.2Qd increases by 4.3% after optimization. The maximal vibration intensity at M1-M4 on the pump base reduced from 0.36 mm/s to 0.25 mm/s, decreasing by 30.5%. In addition, the vibration velocities of bracket in pump side and outlet flange also have significant reductions.

Analysis of Rocket Booster Separation from Air-Breathing Engine with Kane's Method (Kane 다물체 동력학을 이용한 공기흡입식 추진기관 부스터 분리에 관한 연구)

  • Choi, Jong-Ho;Lim, Jin-Shik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.41-49
    • /
    • 2009
  • The present paper describes a mathematical modeling and simulation of the separation of a solid rocket booster from an air breathing engine vehicle. The vehicle and booster are considered as a multi-connected body and the booster is assumed to move only along the axial direction of the vehicle. The dynamic motion of the vehicle and the booster were modeled by using Kane's method. The aerodynamic forces on the whole system along various positions of booster were calculated by using DATCOM software and the internal pressure force acting on the effective surface during separation was simply calculated with gas dynamics and Taylor MacColl equation. Numerical simulation was done by using Mathworks-Matlab. From the result, the variation of Mach number and angle of attack are not large during the separation, so the variation of pitch angle and the characteristics of inlet flow for varying the Mach number and angle of attack during the separation test can be identified as neglectable values.

Uncertainty Assessment of a Towed Underwater Stereoscopic PIV System (예인수조용 스테레오스코픽 입자영상유속계 시스템의 불확실성 해석)

  • Seo, Jeonghwa;Seol, Dong Myung;Han, Bum Woo;Yoo, Geuksang;Lim, Tae Gu;Park, Seong Taek;Rhee, Shin Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.311-320
    • /
    • 2014
  • Test uncertainty of a towed underwater Stereoscopic Particle Image Velocimetry (SPIV) system was assessed in a towing tank. To estimate the systematic error and random error of mean velocity and turbulence properties measurement, velocity field of uniform flow was measured. Total uncertainty of the axial component of mean velocity was 1.45% of the uniform flow speed and total uncertainty of turbulence properties was 3.03%. Besides, variation of particle displacement was applied to identify the change of error distribution. In results for variation of particle displacement, the error rapidly increases with particle movement under one pixel. In addition, a nominal wake of a model ship was measured and compared with existing experimental data by five-hole Pitot tubes, Pitot-static tube, and hot wire anemometer. For mean velocity, small local vortex was identified with high spatial resolution of SPIV, but has serious disagreement in local maxima of turbulence properties due to limited sampling rate.

A Theoretical Study on the Characteristics of Fire Resistance for the Concrete Filled Tubular Steel Columns (콘크리트충전 강관기둥의 내화특성에 관한 이론적 연구)

  • Chung, Kyung Soo;Choi, Sung Mo;Kim, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.649-658
    • /
    • 1997
  • When steel tube as a column is filled with concrete, it is common that the load-bearing capacities of CFST(Concrete Filled Steel Tube) column are increased substantially, And the CFST column can obtain a capacity of fire resistance without any additional detail on the surface of the steel tube for fire protection. In order to clarify the behavior of CFST column during fire occurrence, a theoretical study is performed, that is, a thermal analysis is used to find temperature gradient dependent on the time on the steel tube and the infilled concrete. N-M (axial force-moment) interaction curves are summarized under the consideration for time dependent variation. The material properties of concrete and steel in accordance with a temperature variation are referred to the existing general data. Thermal transient analyses are performed by finite element method through ANSYS and then these results are verified by comparing with the existing test results. On the basis of analytical results, load-carrying capacities (N-M interaction curves) are calculated by numerical analysis method.

  • PDF

Experimental Study of Characteristics of Longitudinal Resistance Behavior of Fasteners in Concrete Track on Bridges (교량 상 콘크리트궤도 체결장치의 종저항 거동특성에 대한 실험적 연구)

  • Yun, Kyung-Min;Park, Beom-Ho;Min, Kyung-Hwan;Lim, Nam-Hyoung
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.638-646
    • /
    • 2016
  • CWR (continuous welded rail) tracks on high-speed railway bridges have much more complicated axial force distributions caused by track-bridge interaction than those behaviors on embankments, and additional problems caused by track-structure interaction with the axial force of the CWR. In order to analyze and limit other physical phenomena caused by track-bridge interaction, a design guideline (KR C-08080, longitudinal track-bridge interaction analysis) is used when designing CWR track on bridges. Domestic analysis and design methods for track-bridge interaction follow the UIC 774-3R, and they suggest conservative methods and deterministic properties. Recently, many studies analyzing the methods of track-bridge interaction considering the loading history are being carried out; however, there has been insufficient studies of the variation of the resistance properties with a consideration of the actual loading history. In this study, the performances of rail fastening systems used for concrete track on bridges were tested and analyzed while considering the loading history. For this purpose, longitudinal and vertical loading combinations, applied in order to simulate the practical conditions and resistance characteristics (stiffness and elastic limit displacement), are analyzed through the experimental results. Also, a comparison study was conducted with the properties in the KR Code.

A Study on Rational Design and Construction of High-Tension-Bolt Friction Joints (고장력볼트 마찰이음의 합리적 설계 및 시공에 관한 연구)

  • Lee, Seung Yong;Kyung, Kab Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.513-521
    • /
    • 2006
  • Many studies have been conducted on the high tension bolt friction connection in the view of the field practice. Those effort, however, unfortunately have not been appropriately applied in the design specifications. Recently, particularly for steel bridges, rationalization of design takes greater attention from designers and hence, demand on rationalization of high tension connection becomes more significant. The purpose of this study is to suggest direction for the rationalization of high tension bolt connection and to also provide fundamental information for the improvement of the design specifications. In order to accomplish the purposes, the design specifications in Korea was analyzed and compared with other specification from abroad, and was studied one of the most important factors including slip coefficient, and the specifications on the size of bolt holes. The effect of over-sized bolt hole and the reduction of axial force on bolt was evaluated through the experimental studies on the slippage of the high tension bolt connections. Other research topics included herein includes the difference of slip coefficients, the effect of over-sized bolt holes and the gap distance of members, and the application of filler plate and corrosion protected bolts. From the research results, it is known that the specifications in Korea apply a constant slip coefficient with respect to the contacted surface conditions while various coefficients are available depending on the contacted surface conditions. Therefore, it is recommended that the specifications in Korea also develop and detail the slip coefficient which can appropriately take account of the variation of the contacted surface conditions. It is also suggested that the limitation abroad on the over-sized bolt hole may be applied for enhancing the effectiveness of construction.

Investigation of Impact Factor Variation of Open-Spandrel Arch Bridges According to Spacing Ratio of Vertical Members (수직재 간격비에 따른 개복식 상로 아치교의 충격계수 변화 분석)

  • Hong, Sanghyun;Oh, Jongwon;Roh, Hwasung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.45-52
    • /
    • 2020
  • An open-spandrel arch bridges, which consists of slab deck, arch rib, and vertical members, shows a various level of moment and axial forces according to the supporting boundary condition of arch rib and vehicle speeds. Also, the definition of impact factor accepts any kind of response parameters, not only displacement response at slab deck. The present study considers concrete open-spandrel arch bridges constrained with fixed conditions at the ends of arch rib and investigates the impact factor variation due to moving load speeds, response parameters, measuring locations, and vertical member spacing ratio of the bridges. The results of Reference model show that the impact factor is biggest when the reactive moment resulted at the vehicle-inducing opposite end of the arch rib is applied. The peak impact factor is a similar level obtained for the middle of the span adjacent to the slab deck center, but it is 19% higher than the peak impact factor calculated using the axial force developed at the same location. Reducing the spacing ratio of the vertical members as half as the reference model whose ratio is 1/9.375 produces a similar level of the moment-based peak impact factor compared to the reference model. However, when the spacing ratio is doubled, the peak impact factor is 4.4 times greater than the reference model.

Non-linear Time History Analysis of Piloti-Type High-rise RC Buildings (필로티형 고층 RC건물의 비선형시간이력해석)

  • Ko, Dong-Woo;Lee, Han-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.35-43
    • /
    • 2009
  • Two types of piloti-type high-rise RC building structures having irregularity in the lower two stories were selected as prototypes, and nonlinear time history analysis was performed using OpenSees to verify the analysis technique and to investigate the seismic capacity of those buildings. One of the buildings studied had a symmetrical moment-resisting frame (BF), while the other had an infilled shear wall in only one of the exterior frames (ESW). A fiber model, consisting of concrete and reinforcing bar represented from the stress-strain relationship, was adapted and used to simulate the nonlinearity of members, and MVLEM (Multi Vertical Linear Element Model) was used to simulate the behavior of the wall. The analytical results simulate the behavior of piloti-type high-rise RC building structures well, including the stiffness and yield force of piloti stories, the rocking behavior of the upper structure and the variation of the axial stiffness of the column due to variation in loading condition. However, MVLEM has a limitation in simulating the abrupt increasing lateral stiffness of a wall, due to the torsional mode behavior of the building. The design force obtained from a nonlinear time history analysis was shown to be about $20{\sim}30%$ smaller than that obtained in the experiment. For this reason, further research is required to match the analytical results with real structures, in order to use nonlinear time history analysis in designing a piloti-type high-rise RC building.