• Title/Summary/Keyword: axial force variation

Search Result 98, Processing Time 0.027 seconds

A Behaviour Analysis on Clayey Ground and Steel Sheet Piles Subjected to Unsymmetrical Surcharges (편재하중을 받는 점토지반과 강널말뚝의 거동해석)

  • Lee, Moon Soo;Lee, Byoung Koo;Jeong, Jin Seob;Kim, Chan Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.977-988
    • /
    • 1994
  • In this paper, the comparisons between field measurments and numerical results ware performed for the settlements, lateral displacement in Jinwol interchange works on the Honam express way whose site was improved by sand drain for the constructions of over bridges, piers and abutments. The computer program was developed by coupling Biot's equation with Sekiguchi's elasto-viscoplastic model under plane strain conditions. Steel pipe piles for piers were replaced into the equivalent steel sheet pile wall. The characteristics of behavior for both the soil foundations and the sheet piles wall were investigated with the variation of axial force on the wall, rigidity of the wall, supported condition of sheet pile into hard strata and the location of anchored point.

  • PDF

The Study on Dynamic Analysis of Durability of a Wheel using CAE (CAE를 이용한 휠 내구성능 동역학 해석을 위한 연구)

  • Park, Jae Heung;Park, Tae Won;Jung, Sung Pil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1296-1303
    • /
    • 2012
  • There is a certain limit to reproduce phenomena between the real vehicle and road, since the existing methods to verify durability of the wheel are mostly uni-axial tests. And the change of durability of the wheel can't be predicted since these tests don't consider the camber angle and lateral force as important factors. In this paper, the FE models of the wheel-tire and drum are created. Then, the vertical and lateral loads are applied to wheel-tire assembly and the camber angle is applied by inclining the wheel-tire assembly to the drum. Based on the analysis result, the crack position is predicted to be created in the body of the wheel. The variation of the stress according to the camber angle is verified and the maximum spot of the stress changes continually.

Wave dispersion analysis of rotating heterogeneous nanobeams in thermal environment

  • Ebrahimi, Farzad;Haghi, Parisa
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.21-37
    • /
    • 2018
  • In the present article, wave dispersion behavior of a temperature-dependent functionally graded (FG) nanobeam undergoing rotation subjected to thermal loading is investigated according to nonlocal strain gradient theory, in which the stress numerates for both nonlocal stress field and the strain gradient stress field. The small size effects are taken into account by using the nonlocal strain gradient theory which contains two scale parameters. Mori-Tanaka distribution model is considered to express the gradually variation of material properties across the thickness. The governing equations are derived as a function of axial force due to centrifugal stiffening and displacements by applying Hamilton's principle according to Euler-Bernoulli beam theory. By applying an analytical solution, the dispersion relations of rotating FG nanobeam are obtained by solving an eigenvalue problem. Obviously, numerical results indicate that various parameters such as angular velocity, gradient index, temperature change, wave number and nonlocality parameter have significant influences on the wave characteristics of rotating FG nanobeams. Hence, the results of this research can provide useful information for the next generation studies and accurate deigns of nanomachines including nanoscale molecular bearings and nanogears, etc.

Shear strength model for reinforced concrete corbels based on panel response

  • Massone, Leonardo M.;Alvarez, Julio E.
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.723-740
    • /
    • 2016
  • Reinforced concrete corbels are generally used to transfer loads within a structural system, such as buildings, bridges, and facilities in general. They commonly present low aspect ratio, requiring an accurate model for shear strength prediction in order to promote flexural behavior. The model described here, originally developed for walls, was adapted for corbels. The model is based on a reinforced concrete panel, described by constitutive laws for concrete and steel and applied in a fixed direction. Equilibrium in the orthogonal direction to the shearing force allows for the estimation of the shear stress versus strain response. The original model yielded conservative results with important scatter, thus various modifications were implemented in order to improve strength predictions: 1) recalibration of the strut (crack) direction, capturing the absence of transverse reinforcement and axial load in most corbels, 2) inclusion of main (boundary) reinforcement in the equilibrium equation, capturing its participation in the mechanism, and 3) decrease in aspect ratio by considering the width of the loading plate in the formulation. To analyze the behavior of the theoretical model, a database of 109 specimens available in the literature was collected. The model yielded an average model-to-test shear strength ratio of 0.98 and a coefficient of variation of 0.16, showing also that most test variables are well captured with the model, and providing better results than the original model. The model strength prediction is compared with other models in the literature, resulting in one of the most accurate estimates.

A Study on the Permanent Magnet Overhang Effect in Brushless DC Motor (브러시리스 DC 모터의 영구자석 오버형 효과 대한 연구)

  • Kwon, H.;Chun, Y.D.;Lee, J.;Kim, S.;Kim, Y.H.;Im, T.B.;Sung, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.599-601
    • /
    • 2001
  • This paper investigates the permanent magnet (PM) overhang effect on the characteristics such as cogging torque and torque in brushless DC motor (BLDCM). The overhang effect has been used to enlarge the performance of the radial flux density in BLDCM and balance the force in the axial direction for the reduction of the vibration. 3D equivalent magnetic circuit network method (3D EMCNM) is used for the accurate and efficient analysis. The characteristics of BLDCM are analyzed according to the variation of overhang length and the optimal length and ratio of overhang is determined.

  • PDF

A Study on the Application of Convergence Measurement System to Inverse Calculation of Tunnel Lining Sectional Forces (터널 라이닝 단면력 역산을 위한 유지관리 내공변위계측시스템 적용 연구)

  • 이대혁;김기선;한일영;박연준;유광호
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.146-155
    • /
    • 2001
  • An inverse calculation method to obtain sectional forces, axial force and flexural moment of a tunnel concrete lining was developed by utilizing convergence measurements acquired at the maintenance stage. To monitor the behavior of the lining, DOCS system was applied to a subway tunnel section. The method was proved to be effective, yielding the same results as measured forces of buried instruments. Many effects such as vibration of sensors, vibration due to test train operation, the variation of temperature and high voltage were checked and a new management scheme for tunnel maintenance was proposed.

  • PDF

The Influence of Tip-mass on Dynamic Characteristics of Rotating Cantilever Pipe Conveying Fluid (유체유동을 갖는 회전 외팔 파이프의 동특성에 미치는 끝단질량의 영향)

  • Yoon, Han-Ik;Choi, Chang-Soo;Son, In-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1824-1830
    • /
    • 2003
  • The vibrational system of this study is consisted of a rotating cantilever pipe conveying fluid and the tip mass. The equation of motion is derived by using the Lagrange equation. The influences of the rotating angular velocity and the velocity of fluid flow in a cantilever pipe have been studied on the dynamic characteristics of a rotating cantilever pipe by the numerical method. The effects of a tip mass on the dynamic response of a cantilever pipe are also studied. The tip-amplitude and maximum tip-deflection of each direction are directly proportional to the tip mass of the cantilever pipe in steady state. It identifies that the influence of the fluid velocity and the rotating angular velocity of the cantilever pipe give much variation the bending tip-displacement of steady state and the bending tip-displacement of non-steady state, respectively. The influence of the rotating angular velocity gives much the deflection of axial direction.

A study on the behavior of cut and cover tunnel by numerical analysis (수치해석 기법을 이용한 복개 터널구조물의 거동에 관한 연구)

  • Lee, Seok-Won;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.43-54
    • /
    • 2003
  • In the deign of cut and cover tunnel, the structural analysis such as rigid frame analysis has been used for its simplicity and convenience. The structural analysis, however, can not consider the geological and geotechnical factors such as soil arching effect. In this study, the dominant factors influencing the behavior of cut and cover tunnel such as interface element, slope of excavation plane, distance between slope and tunnel lining, and location of slope of covered soil, were investigated by the numerical analysis to develop the analysis technique and design technology. Based on the results, the variation of bending moment, shear stress, axial force and displacements were evaluated and analyzed for each factor.

  • PDF

Probabilistic Analysis of Lifetime Extreme Live Loads in Office Buildings (사무실의 사용기간 최대 적재하중에 대한 확률론적 분석)

  • 김상효;조형근;배규웅;박흥석
    • Computational Structural Engineering
    • /
    • v.3 no.1
    • /
    • pp.109-116
    • /
    • 1990
  • Live load data in domestic office buildings have been collected in a systematic manner. Based on surveyed data, equivalent uniformly distributed load intensities, which produce the same load effect as the actual spatially varying, live load, have been obtained for various structural members (such as slab, beam, column, etc. ). Influence surface method has been employed to compute load effects under real live load, including beam moment, slab moment as well as axial force in column. The results have been examined to find probabilistic characteristics and relationship between influence area and load intensity (or coefficient of variation). The results were also compared with other survey results and found to be reasonable. Based on the probabilistic load models obtained, the lifetime extreme values have been analyzed and compared with current design loads. Tentative equations applicable to decide more rational design loads are also suggested as functions of influence area.

  • PDF

A Study on Development of Pre-heat Treated Steel Head Bolt for Swashplate Type Compressor of Car Air-conditioner (차량용 에어컨 압축기의 선조질강 헤드 볼트 개발에 대한 연구)

  • Kim, Youngshin;Kim, Hokyoum;Hwang, Seungyong;Kim, Youngman
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.588-595
    • /
    • 2016
  • This paper is a study on head bolts that are used in A/C compressors to reduce production cost and solve leak problems on the head bolt seat area that causes massive intermittent malfunctioning during production. In this study, the pre-heat treated steel, which was used as a material in the head bolt, eliminated the heat treatment process after forging. The pre-heat treated steel head bolts, which have 10 % lower tensile strength than the conventional SCM 435 head bolts, were selected after considering the results of creeping rupture properties, axial force, and stress concentration per tensile strength variation. Then, the performance test and the durability test with the A/C compressor that was assembled with the pre-heat treated steel head bolts were performed and verified. Based on the results, the pre-heat treated steel head bolts developed in this study saved 7.3 % in production cost by eliminating the heat treatment process and the logistics process. Furthermore, the leak problem on the head bolt seat area in the A/C compressor was addressed significantly on the mass production assembly line.