• Title/Summary/Keyword: axial extension

Search Result 106, Processing Time 0.023 seconds

Development of SD-OCT for Imaging the in vivo Human Tympanic Membrane

  • Cho, Nam-Hyun;Jung, Un-Sang;Kwon, Hyeong-Il;Jeong, Hyo-Sang;Kim, Jee-Hyun
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.74-77
    • /
    • 2011
  • We report a novel extension of 840 nm wavelength- based spectral domain optical tomography to in vivo/real-time human middle ear diagnosis. The system was designed to access the middle ear region with a specifically dedicated handheld probe. The real-time displaying feature was mandatory for in vivo imaging human subject with the handheld probe, and the system could provide about 20 frames per second for 2048 pixels by 1000 A-scans without using any graphics process units under the Labview platform. The inner ear structure of a healthy male volunteer was imaged with the developed system with the axial and lateral resolutions of $15\;{\mu}m$ and $30\;{\mu}m$, respectively. The application of the OCT technology to early diagnose otitis media(OM) is very promising and could be another extensive branch in the OCT field because it provides the depth resolved image including tympanic membrane (TM) and structures below TM whereas the conventional otoscope technique only gives asurface image of the TM.

Unexpected postoperative atlantoaxial rotatory subluxation after excision of melanocytic nevi of the head and neck in older children: two case reports and literature review

  • Jiwon Kang;Byung Jun Kim
    • Archives of Craniofacial Surgery
    • /
    • v.25 no.2
    • /
    • pp.85-89
    • /
    • 2024
  • Postoperative atlantoaxial rotatory subluxation (AARS) is a rare complication that develops almost exclusively in children following oropharyngeal and otologic surgeries, proposing that oropharyngeal inflammatory responses and excessive head rotation are responsible factors. However, there have been no reports of AARS after excision of a nevus on the head and neck. Here, we present two cases of AARS following limited head rotation during simple nevus excision. Patient 1, a 9-year-old girl, complained of neck pain and limited range of motion after excision of the nevus on the neck. After 2 months, computed tomography and magnetic resonance imaging finally revealed AARS with a ruptured transverse atlantal ligament. A month of halo traction was required for the treatment. Patient 2, an 11-year-old girl, presented with immediate pain and limited neck extension after tissue expander insertion under the upper chest and excision of the nevus on her left cheek. The diagnosis was promptly made using cervical spine radiography. A cervical collar was applied for 1 month. Both patients recovered without any complications after treatment. This report highlights the importance of suspicion for AARS after surgery regardless of surgical duration or amount of head rotation.

Crack Propagation Analysis Using the Concept of an Equivalent Plastic Hinged Length (등가소성힌지개념을 이용한 지하구조물 균열진전해석)

  • Park, Si-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.115-124
    • /
    • 2009
  • In this study, a numerical analysis technique was newly developed to evaluate the damage propagation characteristics of concrete structures. To do this, numerical techniques are incorporated for the concrete members up to the compressive damage due to the bending compressive forces after the tensile crack based on the deformation mechanism. Especially, for the compressive damage stage after the tensile crack, the crack propagation process will be analyzed numerically using the concept of an equivalent plastic hinged length. Using this concept, it can be established that section forces, such as axial forces and the moment cracks takes place, can be related to the width of the crack making it possible to analyze the crack extension.

Influence of the length and location of implants on distal extension removable partial dentures: finite element analysis (후방연장 가철성 국소의치에서 임플란트의 길이와 위치가 응력분산에 미치는 영향)

  • Kim, Jin-Hee;Cho, Jin-Hyun;Lee, Cheong-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.3
    • /
    • pp.186-194
    • /
    • 2015
  • Purpose: To evaluate the effects of implant location and length on stress distribution and displacement in osseointegrated-implants that were associated with mandibular distal extension removable partial dentures (DERPD). Materials and Methods: A sagittally cut model with the #33, #34 teeth and a removable partial denture of the left mandible was used. Seven models were designed with NX 9.0. Models A, B, C had implants with lengths of 11, 6, 4 mm, respectively, under the denture base of the #37 artificial tooth. Models D, E, F had implants with lengths of 11, 6, 4 mm, respectively, under the denture base of the #36 artificial tooth. Model G did not have any implants. Axial force (250 N) was loaded on #36 central fossa. The finite element analysis was performed with MSC Nastran. Von Mises stress maps were plotted to visualize the results. Results: The models of #37 implant placement showed much lower stress concentration on the surrounding bone of the implant compared with #36. The #36 implant position tended to reduce displacement more than #37. Conclusion: When an IARPD is designed, the distal positioning of implant placement has more advantages in the edentulous bone of DERPD on the prognosis of short implants and the stress distribution of edentulous alveolar bone. Using implants with longer lengths are important for stress distribution. However, Additional studies are necessary of the effects of length on implant survival.

A Study on the Method of High-Speed Reading of Postal 4-state Bar Code for Supporting Automatic Processing (우편용 4-state 바코드 고속판독 방법에 관한 연구)

  • Park, Moon-Sung;Kim, Hye-Kyu;Jung, Hoe-Kyung
    • The KIPS Transactions:PartD
    • /
    • v.8D no.3
    • /
    • pp.285-294
    • /
    • 2001
  • Recently many efforts on the development of automatic processing system for delivery sequency sorting have been performed in ETRI, which requires the use of postal 4-state bar code system to encode delivery points. This paper addresses the issue on the extension of read range and the improvement of image processing method. For the improvement of image processing procedure, applied information acquisition method through basic two thresholds onto the horizontal axial line of gray image based on reference information of 4-state bar code symbology. Symbol values are computed after creating two threshold values based on the obtained information through search of horizontal axial values. The implementation result of 4-state bar code reader are obtained the symbol values within 30~60 msec (58,000~116,000 mail item/hour)without noise removal or image rotation in spite of the incline $\pm 45^{\circ}$.

  • PDF

In vivo 3-dimensional Kinematics of Cubitus Valgus after Non-united Lateral Humeral Condyle Fracture

  • Kim, Eugene;Park, Se-Jin;Lee, Ho-Seok;Park, Jai-Hyung;Park, Jong Kuen;Ha, Sang Hoon;Murase, Tsuyoshi;Sugamoto, Kazuomi
    • Clinics in Shoulder and Elbow
    • /
    • v.21 no.3
    • /
    • pp.151-157
    • /
    • 2018
  • Background: Nonunion of lateral humeral condyle fracture causes cubitus valgus deformity. Although corrective osteotomy or osteosynthesis can be considered, there are controversies regarding its treatment. To evaluate elbow joint biomechanics in non-united lateral humeral condyle fractures, we analyzed the motion of elbow joint and pseudo-joint via in vivo three-dimensional (3D) kinematics, using 3D images obtained by computed tomography (CT) scan. Methods: Eight non-united lateral humeral condyle fractures with cubitus valgus and 8 normal elbows were evaluated in this study. CT scan was performed at 3 different elbow positions (full flexion, $90^{\circ}$ flexion and full extension). With bone surface model, 3D elbow motion was reconstructed. We calculated the axis of rotation in both the normal and non-united joints, as well as the rotational movement of the ulno-humeral joint and pseudo-joint of non-united lateral condyle in 3D space from full extension to full flexion. Results: Ulno-humeral joint moved to the varus on the coronal plane during flexion, $25.45^{\circ}$ in the non-united cubitus valgus group and $-2.03^{\circ}$ in normal group, with statistically significant difference. Moreover, it moved to rotate externally on the axial plane $-26.75^{\circ}$ in the non-united cubitus valgus group and $-3.09^{\circ}$ in the normal group, with statistical significance. Movement of the pseudo-joint of fragment of lateral condyle showed irregular pattern. Conclusions: The non-united cubitus valgus group moved to the varus with external rotation during elbow flexion. The pseudo-joint showed a diverse and irregular motion. In vivo 3D motion analysis for the non-united cubitus valgus could be helpful to evaluate its kinematics.

Spinal Stability Evaluation According to the Change in the Spinal Fixation Segment Based on Finite Element Analysis (유한요소해석 기반 척추 고정분절 변화에 따른 척추 안정성 평가)

  • Kim, Cheol-Jeong;Son, Seung Min;Heo, Jin-Young;Lee, Chi-Seung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.145-152
    • /
    • 2020
  • In this study, we evaluated spinal stability based on the change in the thoracolumbar fixation segment using finite element analysis (FEA). To accomplish this, a finite element (FE) model of a normal thoracolumbar spine (T10-L4), including intervertebral discs (IVD), ligaments, and facet joints, was constructed, and the material properties reported in previous studies were implemented. However, L1 was assumed as the lesion site, and three types of posterior fixation, namely, L1-L2, T12-L2, and T12-L1-L2, were implemented in the thoracolumbar FE model. In addition, the loading conditions for flexion, extension, lateral bending, and axial rotation were adopted. Through the series FEA, the deformation, equivalent stress, range of motion, and moment on the pedicle screws, vertebrae, and IVD were calculated, and the spinal stability was evaluated based on the FEA results.

Additional Surgical Method Aimed to Increase Distractive Force during Occipitocervical Stabilization : Technical Note

  • Antar, Veysel;Turk, Okan
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.2
    • /
    • pp.277-281
    • /
    • 2018
  • Objective : Craniovertebral junctional anomalies constitute a technical challenge. Surgical opening of atlantoaxial joint region is a complex procedure especially in patients with nuchal deformity like basilar invagination. This region has actually very complicated anatomical and functional characteristics, including multiple joints providing extension, flexion, and wide rotation. In fact, it is also a bottleneck region where bones, neural structures, and blood vessels are located. Stabilization surgery regarding this region should consider the fact that the area exposes excessive and life-long stress due to complex movements and human posture. Therefore, all options should be considered for surgical stabilization, and they could be interchanged during the surgery, if required. Methods : A 53-year-old male patient applied to outpatients' clinic with complaints of head and neck pain persisting for a long time. Physical examination was normal except increased deep tendon reflexes. The patient was on long-term corticosteroid due to an allergic disease. Magnetic resonance imaging and computed tomography findings indicated basilar invagination and atlantoaxial dislocation.The patient underwent C0-C3-C4 (lateral mass) and additional C0-C2 (translaminar) stabilization surgery. Results : In routine practice, the sites where rods are bound to occipital plates were placed as paramedian. Instead, we inserted lateral mass screw to the sites where occipital screws were inserted on the occipital plate, thereby creating a site where extra rod could be bound.When C2 translaminar screw is inserted, screw caps remain on the median plane, which makes them difficult to bind to contralateral system. These bind directly to occipital plate without any connection from this region to the contralateral system.Advantages of this technique include easy insertion of C2 translaminar screws, presence of increased screw sizes, and exclusion of pullout forces onto the screw from neck movements. Another advantage of the technique is the median placement of the rod; i.e., thick part of the occipital bone is in alignment with axial loading. Conclusion : We believe that this technique, which could be easily performed as adjuvant to classical stabilization surgery with no need for special screw and rod, may improve distraction force in patients with low bone density.

Particle deposition on a rotating disk in application to vapor deposition process (VAD) (VAD공정 관련 회전하는 원판으로의 입자 부착)

  • Song, Chang-Geol;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.61-69
    • /
    • 1998
  • Vapor Axial Deposition (VAD), one of optical fiber preform fabrication processes, is performed by deposition of submicron-size silica particles that are synthesized by combustion of raw chemical materials. In this study, flow field is assumed to be a forced uniform flow perpendicularly impinging on a rotating disk. Similarity solutions obtained in our previous study are utilized to solve the particle transport equation. The particles are approximated to be in a polydisperse state that satisfies a lognormal size distribution. A moment model is used in order to predict distributions of particle number density and size simultaneously. Deposition of the particles on the disk is examined considering convection, Brownian diffusion, thermophoresis, and coagulation with variations of the forced flow velocity and the disk rotating velocity. The deposition rate and the efficiency directly increase as the flow velocity increases, resulting from that the increase of the forced flow velocity causes thinner thermal and diffusion boundary layer thicknesses and thus causes the increase of thermophoretic drift and Brownian diffusion of the particles toward the disk. However, the increase of the disk rotating speed does not result in the direct increase of the deposition rate and the deposition efficiency. Slower flow velocity causes extension of the time scale for coagulation and thus yields larger mean particle size and its geometric standard deviation at the deposition surface. In the case of coagulation starting farther from the deposition surface, coagulation effects increases, resulting in the increase of the particle size and the decrease of the deposition rate at the surface.

Kinematic Analysis of Thoraco-Lumbar Spine in Bad Postures During Daily Life (일상 생활 중의 나쁜 자세에 따른 흉·요추 관절의 기구학 해석)

  • Han, Ah-Reum;Jeong, Ji-In;Feng, Jun;Kim, Yoon-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1105-1110
    • /
    • 2012
  • The spine is one of the most important skeletal joints, and it strongly affects the health of the musculoskeletal system. A normal spine has an S-shape, and it is very important to maintain this shape. Recently, spinal diseases such as low back pain have increased rapidly, especially among the elderly. Some of these diseases are caused by congenital spinal disorders and sporting and accident injuries as well as by bad postures. Improper spinal postures could generate excessive disc pressure, which is related to degeneration and pain. Therefore, in this study, we investigated the three-dimensional kinematic parameters of the thoraco-lumbar joint in several bad postures using a motion capture analysis technique. Different bad postures created a significant amount of flexion/extension, side bending, and axial rotation angle compared with neutral postures. Further study is necessary to investigate the disc pressure and ligament force due to the increase in joint rotation from the bad postures.