• Title/Summary/Keyword: axial extension

Search Result 104, Processing Time 0.03 seconds

Biomechanics of the Lumbar Intervertebral Disk (요추디스크의 생체역학)

  • Park Ji-Whan
    • The Journal of Korean Physical Therapy
    • /
    • v.2 no.1
    • /
    • pp.103-112
    • /
    • 1990
  • The intervertebral disc in the anterior portion of the function unit gives the spine its flexibility. The disc is attached closely to the vertebral endplates. Between these endplates and the annulus fibrosus, the nucleus pulposus of the lumbar disc is enclosed in a circle of unyielding tissues. Compressive pressure placed on the disc is dissipated circumferentially in a passive manner In response to the greater axial forced exerted on the lumbar spine in comparison to the cervical and thoracic spines, the nucleus pulposus has its greatest surface area in the lumbar spine. The intervertebral disc is not only structure that helps diss pate stresses placed on the spine. With flexion, extension, rotation, or shear stress, the load distribution on the function unit is shared by the intervertebral disc, anterior and posterior longitudinal ligaments, the facet joints and capsules, and other ligamentous structures like the ligamentum flavum, interspinous and supraspinous ligaments, which attach to the posterior elements of the functional unit.

  • PDF

Development of Hip Joint Simulator to Evaluate The Wear of Biomaterials Used in Total Hip Joint Replacement (인공고관절 생체재료 마멸평가를 위한 시뮬레이터 개발)

  • 이권용;윤재웅;전승범;박성길
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.265-270
    • /
    • 2001
  • Hip joint simulator which Is an essential device for evaluating the wear of biomaterials (ultrahigh molecular weight polyethylene, Co-Cr alloy, alumina, etc.) used in total hip joint replacement was developed. This hip joint simulator mimics the joint motion and joint loading of human gait by adapting the 4 degree of freedom in kinematic motion (flexing/extension, adduction/abduction, Internal rotation/external rotation) and axial loading, Four stations are operated by 8 servo-motors and harmony drives. Joint leading was imposed by displacement control from a ball screw, LM guide, and spring system. Each kinematic link system operates separately or coupled modes. A heater and a thermocouple were installed for keeping the body temperature in each station.

  • PDF

Numerical Analysis of Effect of Waveform Micropile on Foundation Underpinning During Building Vertical Extension Remodeling (수치해석을 통한 수직증축 리모델링시 파형 마이크로파일의 보강효과 분석)

  • Wang, Cheng-Can;Jang, Youngeun;Kim, Seok-Jung;Han, Jin-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.335-344
    • /
    • 2019
  • Micropiles are widely used for foundation underpinning to enhance bearing capacity and reduce settlement of existing foundation. In this study, the main objective is to evaluate underpinning performance of a newly developed micropile called waveform micropile for foundation underpinning during vertical extension. Finite element method (FEM) was used to evaluate the underpinning performance of waveform micropile in terms of load-settlement response of underpinned foundation and load sharing behavior. For comparison, underpinning effects of three conventional micropiles with different lengths were also discussed in this study. Numerical results of load-settlement response for single pile demonstrated that bearing capacity and axial stiffness of waveform micropiles were higher than those of conventional micropiles because of the effect of shear keys of waveform micropiles. When additional loads 20 %, which is according to design loads of the vertical extension, were applied to the underpinned foundation, load sharing capacity of waveform micropile was 40 % higher than conventional micropile at the same size. The waveform micropile also showed better underpinning performance than the conventional micropile of length 1~1.5 times of waveform micropile.

The Biomechancial Effects of an Interspinous Spacer Implant on 3-D Motions for the Treatment of Lumbar Spinal Stenosis (요추부 척추관 협착증 치료를 위한 극돌기간 삽입술의 3차원 분석을 통한 생체역학적 효과 분석)

  • 이희성;신규철;문수정;정태곤;이권용;이성재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1207-1210
    • /
    • 2004
  • As many humans age, degenerative lumbar spinal stenosis (DLSS) becomes a major cause of lower limb discomfort and disability. By surgical treatment method of DLSS, the existing surgical treatment methods using internal fixation have showed degeneration changes of an adjacent vertebrae and loss of lumbar spine lordosis-kyphosis due to eliminating a motion. For solving the problems of internal fixation, a novel interspinous spacer has been developed to treat DLSS by surgical treatment method. In this study, we evaluated the biomechanical effects of the interspinous spacer on the kinematics of the porcine lumbar spine before and after insertion of the implant. For this purpose, a device that is capable of measuring 3-D motions were built based on direct linear transformation (DLT) algorithm written with MATLAB program. Results showed that in extension, a change of the mean angle between the intact and the implanted specimens at L4-L5 was 1.87 degree difference and the implant reduced the extension range of motion of the L4-L5 (p<0.05). But the range of motion in flexion, axial rotation and lateral bending at the adjacent segments was not statistically affected by the implant. In conclusion, we thought that interspinous spacer may have remedical value for DLSS by flexing human lumbar spine.

  • PDF

Biomechanical Analysis of the Implanted Constrained and Unconstrained ICR Types of Artificial Disc using FE Model (순간중심 고정식 및 이동식 인공디스크 적용에 대한 유한요소 모델을 이용한 생체역학적 분석)

  • Yun Sang-Seok;Jung Sang-Ki;Kim Young-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.176-182
    • /
    • 2006
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain, biomechanical changes with its implantation were rarely studied. To evaluate the effect of artificial disc implantation on the biomechanics of functional spinal unit, a nonlinear three-dimensional finite element model of L4-L5 was developed with 1-mm CT scan data. Biomechanical analysis was performed for two different types of artificial disc having constrained and unconstrained instant center of rotation(ICR), ProDisc and SB Charite III model. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, forces on the spinal ligaments and facet joint, and stress distribution of vertebral endplate for flexion-extension, lateral bending, and axial rotation with a compressive preload of 400N were compared. The implanted model showed increased flexion-extension range of motion compared to that of intact model. Under 6Nm moment, the range of motion were 140%, 170% and 200% of intact in SB Charite III model and 133%, 137%, and 138% in ProDisc model. The increased stress distribution on vertebral endplate for implanted cases could be able to explain the heterotopic ossification around vertebral body in clinical observation. As a result of this study, it is obvious that implanted segment with artificial disc suffers from increased motion and stress that can result in accelerated degenerated change of surrounding structure. Unconstrained ICR model showed increased in motion but less stress in the implanted segment than constrained model.

The Changes in Range of Motion after a Lumbar Spinal Arthroplasty with Charite$^{TM}$ in the Human Cadaveric Spine under Physiologic Compressive Follower Preload: A Comparative Study between Load Control Protocol and Hybrid Protocol

  • Kim, Se-Hoon;Chang, Ung-Kyu;Chang, Jae-Chil;Chun, Kwon-Soo;Lim, T. Jesse;Kim, Daniel H.
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.2
    • /
    • pp.144-151
    • /
    • 2009
  • Objective: To compare two testing protocols for evaluating range of motion (ROM) changes in the preloaded cadaveric spines implanted with a mobile core type Charite$^{TM}$ lumbar artificial disc. Methods: Using five human cadaveric lumbosacral spines (L2-S2), baseline ROMs were measured with a bending moment of 8 Nm for all motion modes (flexion/extension, lateral bending, and axial rotation) in intact spine. The ROM was tracked using a video-based motion-capturing system. After the Charite$^{TM}$ disc was implanted at the L4-L5 level, the measurement was repeated using two different methods: 1) loading up to 8 Nm with the compressive follower preload as in testing the intact spine (Load control protocol), 2) loading in displacement control until the total ROM of L2-S2 matches that when the intact spine was loaded under load control (Hybrid protocol). The comparison between the data of each protocol was performed. Results: The ROMs of the L4-L5 arthroplasty level were increased in all test modalities (p < 0.05 in bending and rotation) under both load and hybrid protocols. At the adjacent segments, the ROMs were increased in all modes except flexion under load control protocol. Under hybrid protocol, the adjacent segments demonstrated decreased ROMs in all modalities except extension at the inferior segment. Statistical significance between load and hybrid protocols was observed during bending and rotation at the operative and adjacent levels (p< 0.05). Conclusion: In hybrid protocol, the Charite$^{TM}$ disc provided a relatively better restoration of ROM, than in the load control protocol, reproducing clinical observations in terms of motion following surgery.

The Comparative Morphometric Study of the Posterior Cranial Fossa : What Is Effective Approaches to the Treatment of Chiari Malformation Type 1?

  • Hwang, Hyung Sik;Moon, Jae Gon;Kim, Chang Hyun;Oh, Sae-Moon;Song, Joon-Ho;Jeong, Je Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.5
    • /
    • pp.405-410
    • /
    • 2013
  • Objective : The objective of this study was to investigate changes in the posterior cranial fossa in patients with symptomatic Chiari malformation type I (CMI) compared to a control group. Methods : We retrospectively reviewed clinical and radiological data from 12 symptomatic patients with CMI and 24 healthy control subjects. The structures of the brain and skull base were investigated using magnetic resonance imaging. Results : The length of the clivus had significantly decreased in the CMI group than in the control group (p=0.000). The angle between the clivus and the McRae line (p<0.024), as the angle between the supraocciput and the McRae line (p<0.021), and the angle between the tentorium and a line connecting the internal occipital protuberance to the opisthion (p<0.009) were significantly larger in the CMI group than in the control group. The mean vertical length of the cerebellar hemisphere (p<0.003) and the mean length of the coronal and sagittal superoinferior aspects of the cerebellum (p<0.05) were longer in the CMI group than in the control group, while the mean length of the axial anteroposterior aspect of the cerebellum (p<0.001) was significantly shorter in the CMI group relative to control subjects. Conclusion : We elucidate the transformation of the posterior cranial fossa into the narrow funnel shape. The sufficient cephalocaudal extension of the craniectomy of the posterior cranial fossa has more decompression effect than other type extension of the craniectomy in CMI patients.

A study on fatigue properties of GFRP in synthetic sea water (인공해수중 GFRP의 피로특성에 관한 연구)

  • 김연직;임재규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1351-1360
    • /
    • 1993
  • The fatigue behavior of GFRP composites is affected by environmental parameters. Therefore, we have to study on effect of sea water on fatigue behavior of GFRP composites as to maintain the safety and confidence in design of ocean structure of GFRP. In this paper, we investigated the fatigue properties of chopped strand glass mat/polyester composite in synthetic sea water. (pH 8.2) In case of the glass fiber (CSM type) reinforced polyester composite materials, the fatigue crack in the both dry and wet specimens tested in air or synthetic sea water occurred at the initial of cycle. Thereafter, it was divided with two regions that one decreased with the crack extension and the other increased with the crack extension. The transition point occurred during the crack propagation shifted to high ${\Delta}K$ value as load increase but its point is not changed regardless of immersion or test environment under a constant load. The synthetic sea water degrades the bond strength between fiber and matrix, thereby the tendency of rapid deceleration and acceleration of the crack growth was appeared.

A Case of Mediastinal Pancreatic Pseudocyst (종격동 췌장성 가성낭종 1례)

  • Kwon, Na-Young;Kim, Do-Hyung;Hong, Seok-Kyun;Choi, Eun-Kyung;Park, Jae-Seok;Jee, Young-Koo;Kim, Keun-Youl;Jee, Keum-Nahn;Choi, Young-Hee;Lee, Kye-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.51 no.5
    • /
    • pp.482-487
    • /
    • 2001
  • A pancreatic pseudocyst with a mediastinal extension is a rare clinical entity. Intrathoracic symptoms such as dysphagia or dyspnea due to compression or associated pleural effusions are quite common. The pseudocysts transverse the diaphragm via the esophageal hiatus or aortic hiatus or by eroding directly through the diaphragm. Here, we report a case of a pancreatic pseudocyst with a mediastinal extension presenting as dysphagia and dyspnea. The diagnosis was confirmed by computerized axial tomography of the chest and abdomen. Usually, the proper management of a large pseudocyst includes percutaneous or surgical internal drainage, but in this case the mediastinal components disappeared with conservative medical treatment.

  • PDF

Dynamic Morphologic Study of the Ulnar Nerve Around the Elbow Using Ultrasonography (초음파를 이용한 주관절 주위 척골 신경의 동적 형태학적 연구)

  • Jeon, In-Ho;Lee, Seong-Man;Choi, Jin-Won;Kim, Poong-Tak
    • Clinics in Shoulder and Elbow
    • /
    • v.10 no.1
    • /
    • pp.99-105
    • /
    • 2007
  • Purpose: The morphological study and dynamic stability of the ulnar nerve around the elbow joint was investigated in asymptomatic normal population using ultrasonography. The purpose of this study is to provide fundamental data for ultrasonographic diagnosis of ulnar neuropathy in cubital tunnel syndrome. Materials and Methods: Fifty cases of 25 healthy male volunteers, aged between 20 to 30 years, included in this study. High resolution 7.5 MHz linear probe was used to examine the ulnar nerve in axial and longitudinal views. In a longitudinal view, the course, position and the thickness of nerve were monitored, the diameter of ulnar nerve and dynamic stability at elbow flexion and extension were measured in an axial view at four different points; 1cm proximal to medial epicondyle, behind the medial epicondyle, entrance to Osborne ligament, and 1cm distal to Osborne ligament. Results: The short diameters of ulnar nerve at elbow extension at four anatomic points were 2.66 mm, 2.97 mm, 2.64 mm, and 2.69 mm and the long diameters were 4.61 mm, 4.56 mm, 4.36 mm, and 4.37 mm, which showed no significant change at each point. However, at elbow flexion, the short diameters were changed to 2.72 mm, 2.34 mm, 2.65 mm, and 2.41 mm and the long diameters into 4.49 mm, 5.40 mm, 4.16 mm, and 4.66 mm. At elbow flexion, significant morphologic change was observed in the medial epicondyle area, and the diameter of the ulnar nerve was shortest at the entrance of Osborne ligament both at flexion and extension. In terms of dynamic stability, nine subluxations and seven dislocations were observed. Conclusion: This study shows dynamic instability and a morphological change of long and short diameters of ulnar nerve at flexion and extension in a normal person, which should be considered in the ultrasonographic diagnosis of ulnar neuropathy.