• Title/Summary/Keyword: axial extension

Search Result 104, Processing Time 0.023 seconds

Soil-Reinforcement Interaction Determined by Extension Test (인장시험(引張試驗)에 의한 보강토(補强土)의 거동결정(擧動決定))

  • Kim, Oon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 1988
  • The new technique has been used to determine the soil-reinforcement interaction. The testing apparatus is essentially a triaxial cell fitted with the capability to house a hollow cylinderical sample. A hollow cylinderical sand specimen with a concentrical layer of reinfarcing material sandwitched in the middle is used in this investigation. The reinforcement is fastened at the base. The hollow specimen can be viewed as a "unit sheet" of a soil-reinforcement composite system of infinite horizontal extent. Axial load as well as inner and outer chamber pressures can be applied to perform a test. The specimen is first subjected to an isotropic stress state corresponding to the overburden pressure. Next, an extension test by reducing the axial load is carried out. The specimen is "loaded" to failure by either the breakage of reinforcing material (tensile failure) or slippage which takes place at the soil-reinforcement interface (i.e. the overcoming of the bonding capacity). Since the reinforcement is fastened at its lower end to the base, any tendency of relative movement between the reinforcement and the sand during an extension test can induce tensile force in the reinforcement thus forming a "reversed pull-out" test condition. Preliminary test results have demonstrated positively of the new approach to test the soil-reinforcement interaction. Reinforcing elements of different extensibility were used to study the deformbility of reinforced soil. Furthermore, both the breakage and the pull-out modes of failure were observed.

  • PDF

Evaluation of Structural Test for Bottom End Piece Used for Nuclear Power Reactor (원자로용 하단고정체에 대한 구조시험 평가)

  • 김재훈;사정우;김덕회;손동성;임정식
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.3-11
    • /
    • 1999
  • The atomic fuel rods between top and bottom end pieces of reactor need to be extended for high combustion rate of future-type fuel to increase the irradiation in the axial direction. For allowing axial extension of the fuel rods, the space between top and bottom end pieces should be expanded. Thus the thickness reduction of the flow plate is necessary. This study was carried out the mechanical strength test by using strain gages as a function of flow plate thickness, the existence of skirt and loading condition for the Korean Fuel Assembly(KOFA). The experimental apparatus was designed for load conditions, uniformly distributed load and displacement. Test method using whiffle tree of uniformly distributed load has been comparatively conservative. The test results were compared with those of finite element analysis and the test method on bottom end piece was established.

  • PDF

The Buckling Analysis of Shells of Revolution (회전(回轉) SHELL의 좌굴(挫屈) 해석(解析))

  • S.J.,Yim;C.D.,Jang;C.H.,Youn
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.2
    • /
    • pp.19-27
    • /
    • 1984
  • An extension of the finite element method to the stability analysis of shells of revolution under static axisymmetric loading is presented in this paper. A systematic procedure for the formulation of the problem is based upon the principle of virtual work. This procedure results in an eigenvalue problem. For solution, the shell of revolution is discretized into a series of conical frusta. The buckling mode in the circumferential direction is assumed, this assumption makes the problem economical for the computing time. The present method is applied to a number of shells of revolution, under axial compression or lateral pressure, and comparision are made with other theoretical results. The results show good agreement each other. The effects of aspect ratio, boundary conditions and buckling modes on the buckling strength of shells of revolution are studied. Also the optimum shape of cylindrical shell under uniform axial compression is obtained from the view point of structural stability.

  • PDF

Arc behaviors and electrode surface damage under the axial magnetic field (축 방향 자기장애 의한 아크의 거동과 전극표면의 손상)

  • Cho, Chu-Hyun;Choi, Young-Wook;Han, Yong-Ki;Han, Hyun;Kwon, Oh-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.188-189
    • /
    • 2007
  • Axial magnetic field was applied into the hollow anode of plasma torch for the purpose of extension of electrode lifetime. The average arc voltage increased because the arc column became longer, the arc voltage ripple frequency became low. The steady state of arc voltage was removed by applied magnetic filed. The lifetime of electrode was over 1000 hours which is 100 times longer than operation without magnetic field.

  • PDF

Nonlinear analysis of reinforced concrete beam elements subject to cyclical combined actions of torsion, biaxial flexure and axial forces

  • Cocchi, Gian Michele;Tiriaca, Paolo
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.829-862
    • /
    • 2004
  • This paper presents a method for the nonlinear analysis of beam elements subjected to the cyclical combined actions of torsion, biaxial flexure and axial forces based on an extension of the disturbed compression field (DSFM). The theoretical model is based on a hybrid formulation between the full rotation of the cracks model and the fixed direction of the cracking model. The described formulation, which treats cracked concrete as an orthotropic material, includes a new approach for the evaluation of the re-orientation of both the compression field and the deformation field by removing the restriction of their coincidence. A new equation of congruence permits evaluating the deformation of the middle line. The problem consists in the solution of coupled nonlinear simultaneous equations expressing equilibrium, congruence and the constitutive laws. The proposed method makes it possible to determine the deformations of the beam element according to the external stresses applied.

The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams

  • Lim, C.W.;Li, C.;Yu, J.L.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.3
    • /
    • pp.223-233
    • /
    • 2009
  • This paper presents a new nonlocal stress variational principle approach for the transverse free vibration of an Euler-Bernoulli cantilever nanobeam with an initial axial tension at its free end. The effects of a nanoscale at molecular level unavailable in classical mechanics are investigated and discussed. A sixth-order partial differential governing equation for transverse free vibration is derived via variational principle with nonlocal elastic stress field theory. Analytical solutions for natural frequencies and transverse vibration modes are determined by applying a numerical analysis. Examples conclude that nonlocal stress effect tends to significantly increase stiffness and natural frequencies of a nanobeam. The relationship between natural frequency and nanoscale is also presented and its significance on stiffness enhancement with respect to the classical elasticity theory is discussed in detail. The effect of an initial axial tension, which also tends to enhance the nanobeam stiffness, is also concluded. The model and approach show potential extension to studies in carbon nanotube and the new result is useful for future comparison.

Edge stresses analysis in thick composite panels subjected to axial loading using layerwise formulation

  • Ahmadi, Isa
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.733-762
    • /
    • 2016
  • Based on a reduced displacement field, a layer-wise (LW) formulation is developed for analysis of thick shell panels which is subjected to axial tension. Employing the principle of minimum total potential energy, the local governing equations of thick panel which is subjected to axial extension are obtained. An analytical method is developed for solution of the governing equations for various edge conditions. The governing equations are solved for free and simply supported edge conditions. The interlaminar stresses in the panel are investigated by means of Hooke's law and also by means of integration of the equilibrium equations of elasticity. Dependency of the result upon the number of numerical layers in the layerwise theory (LWT) is studied. The accuracy of the numerical results is validated by comparison with the results of the finite element method and with other available results in the open literature and good agreement is seen between the results. Numerical results are then presented for the distribution of interlaminar normal and shear stresses within the symmetric and un-symmetric cross-ply thick panels with free and simply supported boundaries. The effects of the geometrical parameters such as radius to thickness and width to thickness ratio are investigated on the distribution of the interlaminar stresses in thick panels.

Numerical Analyses on the Aerodynamic Characteristics of an Axial Type In-line Duct Fan (축류식 In-line duct fan의 공력특성에 관한 전산해석)

  • Cho, Lee-Sang;Ahn, Kwang-Weon;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.1-11
    • /
    • 2004
  • Numerical analyses on the aerodynamic characteristics of a counter rotating axial flow fan were conducted for the development of an axial type in-line duct fan. The counter rotating fan has a front rotor and a rear rotor which are counter rotating each other. Blade design of the counter rotating fan was done by extension of design method for axial flow fan which consists of rotor and stator blades. Through flow analysis was performed using matrix method which is applied for flow fields prediction of compressors or turbines. Aerodynamic characteristics and characteristic curves of the counter rotating fan were analyzed by expansion of the frequency domain panel method with duct modeling. Pressure losses were higher at leading edge and hub region of rotor blades. Characteristic curve of the counter rotating fan was overpredicted without consideration of viscous effect.

A Case of Hypoglossal Neurilemmoma Resected Via Burr-hole Craniectomy

  • Kim, Young-Jin;Ko, Yong;Yi, Hyeong-Joong;Oh, Suck-Jun
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.1
    • /
    • pp.43-46
    • /
    • 2007
  • Hypoglossal neurilemmoma is extremely rare. Intracranial hypoglossal neurilemmoma has been reported to the present most commonly as a space-occupying lesion with symptoms of raised intracranial pressure. A 68-year-old women presented with deviation of the tongue to the left on protrusion. Preoperative radiological images revealed an extra-axial mass in and around the hypoglossal canal. The tumor was totally resected via retrosigmoid suboccipital approach with burrhole craniectomy. Histopathological examination verified a neurilemmoma. She had no neurologic abnormality except hypoglossal palsy which recovered completely in six months. Retrosigmoid suboccipital approach with burrhole craniectomy can be an useful approach in intracranial hypoglossal neurilemmoma without extracranial extension or with minimal extracranial extension into the hypoglossal canal.

3-D Dynamic Visualization by Stereoscopic PIV

  • LEE Young-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.15-23
    • /
    • 2004
  • The present study is aimed to achieve dynamic visualization from the in-house 3-D stereoscopic PIV to represent quantitative flow information such as time-resolved 3-D velocity distribution, vorticity, turbulent intensity or Reynolds stresses and so on. One of the application of the present study is Leading edge extension(LEX) flow appearing on modern delta wing aircraft. The other is mixing flow in stirring tank used in industry field. LEX in a highly swept shape applied to a delta wing features the modern air-fighters. The LEX vortices generated upon the upper surface of the wing at high angle of attack enhance the lift force of the delta wing by way of increased negative suction pressure over the surfaces. The present method resolves also the complicated flow patterns of two type impellers rotating in stirring vessel. Flow quantities such as three velocity vector components, vorticity and other flow information can be easily visualized via the 3D time-resolved post-processing visualization. And it makes the easy understanding of the unsteady flow characteristics of the typical industrial mixers.

  • PDF