• Title/Summary/Keyword: axial defects

Search Result 73, Processing Time 0.025 seconds

Studying the influences of mono-vacancy defect and strain rate on the unusual tensile behavior of phosphorene NTs

  • Hooman Esfandyari;AliReza Setoodeh;Hamed Farahmand;Hamed Badjian;Greg Wheatley
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.59-65
    • /
    • 2023
  • In this present article, the mechanical behavior of single-walled black phosphorene nanotubes (SW-αPNTs) is simulated using molecular dynamics (MD). The proposed model is subjected to the axial loading and the effects of morphological parameters, such as the mono-vacancy defect and strain rate on the tensile behavior of the zigzag and armchair SW-αPNTs are studied as a pioneering work. In order to assess the accuracy of the MD simulations, the stress-strain response of the current MD model is successfully verified with the efficient quantum mechanical approach of the density functional theory (DFT). Along with reproducing the DFT results, the accurate MD simulations successfully anticipate a significant variation in the stress-strain curve of the zigzag SW-αPNTs, namely the knick point. Predicting such mechanical behavior of SW-αPNTs may be an important design factor for lithium-ion batteries, supercapacitors, and energy storage devices. The simulations show that the ultimate stress is increased by increasing the diameter of the pristine SW-αPNTs. The trend is identical for the ultimate strain and stress-strain slope as the diameter of the pristine zigzag SW-αPNTs enlarges. The obtained results denote that by increasing the strain rate, the ultimate stress/ultimate strain are respectively increased/declined. The stress-strain slope keeps increasing as the strain rate grows. It is worth noting that the existence of mono-atomic vacancy defects in the (12,0) zigzag and (0,10) armchair SW-αPNT structures leads to a drop in the tensile strength by amounts of 11.1% and 12.5%, respectively. Also, the ultimate strain is considerably altered by mono-atomic vacancy defects.

Oxide perovskite crystals type ABCO4:application and growth

  • Pajaczkowska, A.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.258-292
    • /
    • 1996
  • In the last year great interest appears to YBCO thin films preparation on different substrate materials. Preparation of epitaxial film is a very difficult problem. There are many requirements to substrate materials that must be fullfilled. Main problems are lattice mismatch (misfit) and similarity of structure. From paper [1] or follows that difference in interatomic distances and angles of substrate and film is mire important problem than similarity of structure. In this work we present interatomic distances and angle relations between substrate materials belonging to ABCO4 group (where A-Sr or Ca, B-rare earth element, C-Al or Ga) of different orientations and YBCO thin films. There are many materials used as substrates for HTsC thin films. ABCO4 group of compounds is characterized by small dielectric constants (it is necessary for microwave applications of HTsC films), absence of twins and small misfit [2]. There most interesting compounds CaNdAlO4, SrLaAlO4 and SrLaGaO4 were investigated. All these compounds are of pseudo-perovskite structure with space group 14/mmm. This structure is very similar to structure of YBCO. SLG substrate has the lowest misfit (0.3%) and dielectric constant. For preparation of then films of substrates of this group of compound plane of <100> orientation are mainly used. Good quality films of <001> orientations are obtained [3]. In this case not only a-a misfit play role, but c-3b misfit is very important too. Sometimes, for preparation of thin films substrates of <001> and <110> orientations were manufactured [3]. Different misfits for different YBCO faces have been analyzed. It has been found that the mismatching factor for (100) face is very similar to that for (001) face so there is possibility of preparation of thin films on both orientations. SrLaAlO4(SLA) and SrLaGaO4(SLG) crystals of general formula ABCO4 have been grown by the Czochralski method. The quality of SLA and SLG crystals strongly depends on axial gradient of temperature and growth and rotation rates. High quality crystals were obtained at axial gradient of temperature near crystal-melt interface lower than 50℃/cm, growth rate 1-3 mm/h and the rotation rate changing from 10-20pm[4]. Strong anisotropy in morphology of SLA and SLG single crystals grown by the Czochralski method is clearly visible. On the basics of our considerations for ABCO4 type of the tetragonal crystals there can appear {001}, {101}, and {110} faces for ionic type model [5]. Morphology of these crystals depend on ionic-covalent character of bonding and crystal growth parameters. Point defects are observed in crystals and they are reflected in color changes (colorless, yellow, green). Point defects are detected in directions perpendicular to oxide planes and are connected with instability of oxygen position in lattice. To investigate facets formations crystals were doped with Cr3+, Er3+, Pr3+, Ba2+. Chromium greater size ion which is substituted for Al3+ clearly induces faceting. There appear easy {110} faces and SLA crystals crack even then the amount of Cr is below 0.3at.% SLG single crystals are not so sensitive to the content of chromium ions. It was also found that if {110} face appears at the beginning of growth process the crystal changes its color on the plane {110} but it happens only on the shoulder part. The projection of {110} face has a great amount of oxygen positions which can be easy defected. Pure and doped SLA and SLG crystals measured by EPR in the<110> direction show more intensive lines than in other directions which allows to suggest that the amount of oxygen defects on the {110} plane is higher. In order to find the origin of colors and their relation with the crystal stability, a set of SLA and SLG crystals were investigated using optical spectroscopy. The colored samples exhibit an absorption band stretching from the UV absorption edge of the crystal, from about 240 nm to about 550 m. In the case of colorless sample, the absorption spectrum consists of a relatively weak band in the UV region. The spectral position and intensities of absorption bands of SLA are typical for imperfection similar to color centers which may be created in most of oxide crystals by UV and X-radiation. It is pointed out that crystal growth process of polycomponent oxide crystals by Czochralski method depends on the preparation of melt and its stoichiometry, orientation of seed, gradient of temperature at crystal-melt interface, parameters of growth (rotation and pulling rate) and control of red-ox atmosphere during seeding and growth (rotation and pulling rate) and control of red-ox atmosphere during seeding and growth. Growth parameters have an influence on the morphology of crystal-melt interface, type and concentration of defects.

  • PDF

Quantitative EC Signal Analysis on the Axial Notch Cracks of the SG Tubes (SG Tube 축방향 노치 균열의 정량적 EC 신호평가)

  • Min, Kyong-Mahn;Park, Jung-Am;Shin, Ki-Seok;Kim, In-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.374-382
    • /
    • 2009
  • Steam generator(SG) tube, as a barrier isolating primary to the secondary coolant system of nuclear power plants(NPP), must maintain the structural integrity far the public safety and its efficient power generation capacity. And SG tubes bearing defects must be timely detected and taken repair measures if needed. For the accomplishment of these objectives, SG tubes have been periodically examined by eddy current testing(ECT) on the basis of administrative notices and intensified SG management program(SGMP). Stress corrosion cracking(SCC) on the SG tubes is not easily detected and even missed since it has lower signal amplitude and other disturbing factors against its detection. However once SCC is developed, that can cause detrimental affects to the SG tubes due to its rapid propagation rate. Accordingly SCC is categorized as prime damage mechanism challenging the soundness of the SG tubes. In this study, reproduced EDM notch specimens are examined for the detectability and quantitative characterization of the axial ODSCC by +PT MRPC probe, containing pancake, +PT and shielded pancake coils apart in a single plane around the circumference. The results of this study are assumed to be applicable fur providing key information of engineering evaluation of SCC and improvement of confidence level of ECT on SG tubes.

Cold Forging Process Design of a Terminal Pin for High-Voltage Capacitors (고압콘덴서용 단자핀의 냉간단조 공정설계)

  • 김홍석;윤재웅;송종호;문인석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.210-215
    • /
    • 2003
  • A terminal pin, which is a part of high-voltage capacitors, has a head section of plate-shaped geometry with 0.8 thickness. The current manufacturing process, in which the head section is welded on the body part, has given wide deviations of part qualities such as geometrical accuracy, mechanical strength and electrical stability. In this paper, a cold forging process sequence was designed in order to produce the terminal pin as one piece. The plate-shaped head section requires an upsetting in the lateral direction of a cylindrical billet, which is followed by a blanking process. The deformed geometry of the upsetting, however, could not be predicted precisely by intuition since metal flows of an axial and a lateral direction of the cylindrical billet would occur simultaneously. Therefore, the geometry of the initial billet was determined by three dimensional finite element analysis in order to avoid defects in blanking process and intermediate forging processes were designed by applying design rules and two dimensional FE analysis. In addition, cold forging tryouts were conducted by using the die sets which were manufactured based on the designed process sequence.

  • PDF

Effect of Surrounding Soil Properties on the Attenuation of the First Guided Longitudinal Wave Mode Propagating in Water-filled, Buried Pipes (주변 흙의 특성이 물이 찬 매립된 배관에서 전파되는 기본 유도 종파 모드 감쇠에 미치는 영향)

  • Lee, Ju-Won;Na, Won-Bae;Shin, Sung-Woo;Kim, Jae-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.32-37
    • /
    • 2010
  • This study presents the attenuation characteristics of the first guided longitudinal wave mode propagating in water-filled, buried steel pipes in order to investigate the effects of soil saturation and compaction on the attenuation patterns. For numerical calculation of attenuation, 10 different combinations of S-wave velocity, P-wave velocity, and soil densities were considered. From the attenuation dispersion curves, which were obtained using Disperse software, we determined that the attenuation decreases as saturation increases, whereas it increases as compaction increases. Over the frequency range from 0.2 to 0.4 MHz, the first longitudinal wave mode has attenuations that are relatively lower than for other ranges, is faster than the first flexural wave mode, and is sensitive to defects aligned in the axial direction. Hence, the first longitudinal wave mode over the mentioned frequency range would be the proper choice for long-range buried pipelines that transport water.

Present Condition and View of Eddy Current Testing Probe for Nuclear Power Plant Steam Generator Tube Examination (원전 증기발생기 세관 검사를 위한 와전류 탐상 프로브의 현황 및 전망)

  • Kim Ji-Ho;Lee Hyang-Beom
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.241-245
    • /
    • 2006
  • In the examination of Steam Generator (SG) tube in Nuclear Power Plant (NPP) Eddy Current Testing (ECT) probes play an Important role in detecting the defects. Bobbin probe and Rotating Pancake Coil (RPC) probe is usually used for the inspection of SG tube. Bobbin probe is good at high speed inspection, but ability of detection of circumferential defect is very weak. On the contrary RPC probe, which moves for inspection in the direction of axial and circumferential simultaneously, has very slow inspection speed, but it was excellent detection capability fur small cracks, which is hardly detected by bobbin probe. Many examinations of SG tube examination of NPP are achieved during short period. Therefore, solution about this must develop probe of new form for examination performance and examination time shortening of other probe. In this paper, analyzed technological present condition of Bob-bin probe and RPC probe been using in Nondestructive Testing (NDT) for SG tube defect detection and Appeared about background theory and view of developed probe newly.

  • PDF

C* Based Life Assessment of 3D Crack at High Temperature (C*에 기초한 3차원 고온균열 수명평가)

  • Han, Tae-Soo;Yoon, Kee-Bong;Lee, Hyung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.823-833
    • /
    • 2001
  • In recent years, the subject of remaining life assessment has drawn considerable attention in chemical plants, where various structural components typically operate at high temperature an pressure. Thus a life prediction methodology accounting for high temperature creep fracture is increasingly needed for the components. Critical defects in such structures are generally found in the form of semi-elliptical surface crack, and the analysis of which is consequently an important problem in engineering fracture mechanics. On this background, we first develop an auto mesh generation program for detailed 3-D finite element analyses of axial and circumferential semi-elliptical surface cracks in a piping system. A high temperature creep fracture parameter C-integral is obtained from the finite element analyses of generated 3-D models. Post crack growth module is further appended here to calculate the amount of crack growth. Finally the remaining lives of surface cracked pipes for various analytical parameters are assessed using the developed life assessment program.

Evaluation of Formability on Hydroformed Part for Automobile Based on Finite Element Analysis (유한요소해석에 의한 자동차용 관재액압성형 부품의 성형성 평가)

  • Song, Woo-Jin;Heo, Seong-Chan;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.52-58
    • /
    • 2008
  • Tube hydroforming process is generally consisted with pre-bending, preforming and hydroforming processes. Among forming defects which may occur in tube hydroforming such as buckling, wrinkling and bursting, the wrinkling and bursting by local instability under excessive tensile stress mode were mainly caused by thinning phenomenon in the manufacturing process. Thus the accurate prediction and suitable evaluation of the thinning phenomenon play an important role in designing and producing the successfully hydroformed parts without any failures. In this work, the formability on hydroformed part for automobile, i.e. engine cradle, was evaluated using finite element analysis. The initial tube radius, loading path with axial feeding force and internal pressure, and preformed configuration after preforming process were considered as the dominant process parameters in total tube hydroforming process. The effects on these process parameters could be confirmed through the numerical experiments with respect to several kinds of finite element simulation conditions. The degree of enhancement on formability with each process parameters such as initial tube radius, loading path and preform configuration were also compared. Therefore, it is noted that the evaluation approach of the formability on hydroformed parts for lots of industrial fields proposed in this study will provide one of feasible methods to satisfy the increasing practical demands for the improvement of the formability in tube hydroforming processes.

Analysis of MRPC Probe Signal According to Defect Size Variation for S/G Tube in Nuclear Power Plant (원전SG세관의 결함크기에 따른 MRPC 프로브의 신호 해석)

  • Kim, Ji-Ho;Song, Ho-Jun;Lim, Keon-Gyu;Lee, Hyang-beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1008-1010
    • /
    • 2005
  • In the examination of steam generator(SG) tube in nuclear power plant, eddy current testing probes play an important role in detecting the defects. Bobbin probe and MRPC probe is usually used for the inspection of SG tube. Bobbin probe is good at high speed inspection, but ability of detection of circumferential defect is very weak. On the contrary MRPC probe, which moves for inspection in the direction of axial and circumferential simultaneously, has very slow inspection speed, but it has excellent detection capability for small cracks, which is hardly detected by bobbin probe. In this paper, for the accurate analysis of experimental ECT signals, construction of MRPC probe signals database according to the variation of defect size is the main purpose. Using 3-D finite element method, ECT signals are analyzed, and signals analysis add according to frequency ingredient. The results, which are analysis and characteristics ion of electromagnetism simulation signals, is databased.

  • PDF

Roles of GASP-1 and GDF-11 in Dental and Craniofacial Development

  • Lee, Yun-Sil;Lee, Se-Jin
    • Journal of Oral Medicine and Pain
    • /
    • v.40 no.3
    • /
    • pp.110-114
    • /
    • 2015
  • Purpose: Growth and differentiation factor (GDF)-11 is a transforming growth factor-${\beta}$ family member that plays important regulatory roles in development of multiple tissues which include axial skeletal patterning, palatal closure, and tooth formation. Proteins that have been identified as GDF-11 inhibitors include GDF-associated serum protein (GASP)-1 and GASP-2. Recently, we found that mice genetically engineered to lack both Gasp1 and Gdf11 have an increased frequency of cleft palate. The goal of this study was to investigate the roles of GDF-11 and its inhibitors, GASP-1 and GASP-2, during dental and craniofacial development and growth. Methods: Mouse genetic studies were used in this study. Homozygous knockout mice for Gasp1 ($Gasp1^{-/-}$) and Gasp2 ($Gasp2^{-/-}$) were viable and fertile, but Gdf11 homozygous knockout ($Gdf11^{-/-}$) mice died within 24 hours after birth. The effect of either Gasp1 or Gasp2 deletion in $Gdf11^{-/-}$ mice during embryogenesis was evaluated in $Gasp1^{-/-}$;$Gdf11^{-/-}$ and $Gasp2^{-/-}$;$Gdf11^{-/-}$ mouse embryos at 18.5 days post-coitum (E18.5). For the analysis of adult tissues, we used $Gasp1^{-/-}$;$Gdf11^{+/-}$ and $Gasp2^{-/-}$;$Gdf11^{+/-}$ mice to evaluate the potential haploinsufficiency of Gdf11 in $Gasp1^{-/-}$ and $Gasp2^{-/-}$ mice. Results: Although Gasp2 expression decreased after E10.5, Gasp1 expression was readily detected in various ectodermal tissues at E17.5, including hair follicles, epithelium in nasal cavity, retina, and developing tooth buds. Interestingly, $Gasp1^{-/-}$;$Gdf11^{-/-}$ mice had abnormal formation of lower incisors: tooth buds for lower incisors were under-developed or missing. Although $Gdf11^{+/-}$ mice were viable and had mild transformations of the axial skeleton, no specific defects in the craniofacial development have been observed in $Gdf11^{+/-}$ mice. However, loss of Gasp1 in $Gdf11^{+/-}$ mice occasionally resulted in small and abnormally shaped auricles. Conclusions: These findings suggest that both GASP-1 and GDF-11 play important roles in dental and craniofacial development both during embryogenesis and in adult tissues.