DOI QR코드

DOI QR Code

Studying the influences of mono-vacancy defect and strain rate on the unusual tensile behavior of phosphorene NTs

  • Hooman Esfandyari (Department of Mechanical and Aerospace Engineering, Shiraz University of Technology) ;
  • AliReza Setoodeh (Department of Mechanical and Aerospace Engineering, Shiraz University of Technology) ;
  • Hamed Farahmand (Department of Mechanical Engineering, Kerman Branch, Islamic Azad University) ;
  • Hamed Badjian (Department of Mechanical and Aerospace Engineering, Shiraz University of Technology) ;
  • Greg Wheatley (College of Science and Engineering, James Cook University)
  • Received : 2022.04.13
  • Accepted : 2022.12.06
  • Published : 2023.07.25

Abstract

In this present article, the mechanical behavior of single-walled black phosphorene nanotubes (SW-αPNTs) is simulated using molecular dynamics (MD). The proposed model is subjected to the axial loading and the effects of morphological parameters, such as the mono-vacancy defect and strain rate on the tensile behavior of the zigzag and armchair SW-αPNTs are studied as a pioneering work. In order to assess the accuracy of the MD simulations, the stress-strain response of the current MD model is successfully verified with the efficient quantum mechanical approach of the density functional theory (DFT). Along with reproducing the DFT results, the accurate MD simulations successfully anticipate a significant variation in the stress-strain curve of the zigzag SW-αPNTs, namely the knick point. Predicting such mechanical behavior of SW-αPNTs may be an important design factor for lithium-ion batteries, supercapacitors, and energy storage devices. The simulations show that the ultimate stress is increased by increasing the diameter of the pristine SW-αPNTs. The trend is identical for the ultimate strain and stress-strain slope as the diameter of the pristine zigzag SW-αPNTs enlarges. The obtained results denote that by increasing the strain rate, the ultimate stress/ultimate strain are respectively increased/declined. The stress-strain slope keeps increasing as the strain rate grows. It is worth noting that the existence of mono-atomic vacancy defects in the (12,0) zigzag and (0,10) armchair SW-αPNT structures leads to a drop in the tensile strength by amounts of 11.1% and 12.5%, respectively. Also, the ultimate strain is considerably altered by mono-atomic vacancy defects.

Keywords

References

  1. Aghdasi, P., Ansari, R., Rouhi, S., Yousefi, S., Goli, M. and Soleimani, H.R. (2021), "Investigating elastic and plastic characteristics of monolayer phosphorene under atomic adsorption by the density functional theory", Physica B, 600, 412603. https://doi.org/10.1016/j.physb.2020.412603.
  2. Ansari, R., Shahnazari, A. and Rouhi, S. (2017), "A density-functional-theory-based finite element model to study the mechanical properties of zigzag phosphorene nanotubes", Physica E, 88, 272-278. https://doi.org/10.1016/j.physe.2017.01.022.
  3. Badjian, H. and Setoodeh, A.R. (2017), "Improved tensile and buckling behavior of defected carbon nanotubes utilizing boron nitride coating-A molecular dynamic study", Physica B, 507, 156-163. https://doi.org/10.1016/j.physb.2016.12.006.
  4. Buscema, M., Groenendijik, D.J., Steele, A.G., Zant, H.S.J. and Gomes, A. (2014), "Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating", Nature Commun., 5, 4651. https://doi.org/10.1038/ncomms5651.
  5. Cai, K., Wan, J., Yang, L. and Wei, N. (2016), "Mechanical behavior of composite double wall nanotubes from carbon and phosphorus", Mater. Sci., 1, 1607. https://doi.org/10.1039/C7CP01274H.
  6. Chen, W.H., Yu, C.F., Chen, I.C. and Cheng, H.C. (2017), "Mechanical property assessment of black phosphorene nanotube using molecular dynamics simulation", Comput. Mater. Sci., 133, 35-44. https://doi.org/10.1016/j.commatsci.2017.03.008.
  7. Deng, X.Y., Luo, Z., Conrad, N.J., Liu, Y., Gong, Y.J., Najmaei, S., Ajayan, P.M., Lou, J., Xu, X.F. and Ye, P.D. (2014), "Black phosphorus-monolayar MoS2 van der waals heterojunction p-n diode", ACS Nano, 8, 8292-8299. https://doi.org/10.1021/nn5027388.
  8. Ebrahimi, F., Nouraei, M., Dabbagh, A. and Rabczuk, T. (2019b), "Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates", Adv. Nano Res., 7(5), 293-310. https://doi.org/10.12989/anr.2019.7.5.293.
  9. Fei, R. and Yang, L. (2014), "Strain-engineering the anisotropic electrical conductance of few layer black phosphorus", Nano Lett, 14, 2884-2889. https://doi.org/10.1021/nl500935z.
  10. Geim, K.A. and Novoselov, K.S. (2009), "The rise of graphene", Nanosci. Technol., 6, 11-19. https://doi.org/10.1142/9789814287005_0002.
  11. Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C. and Zhi, C. (2010), "Boron nitride nanotubes and nanosheets", ACS Nano, 4, 2979-2993. https://doi.org/10.1021/nn1006495.
  12. Guan, J., Zhu, Z. and Tomanek, D. (2014), "High stability of faceted nanotubes and fullerenes of multi-phase layered phosphorus: A computational study", Phys. Rev. Lett., 113, 226801. https://doi.org/10.1103/PhysRevLett.113.226801.
  13. Guo, H., Lu, N., Dai, J., Wu, X. and Zeng, X.C., (2014), "Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers", J. Phys. Chem. C, 118(25), 14051-14059. https://doi.org/10.1021/jp505257g.
  14. Hatam, S., Mohammadi, H. and Rajabpour, A. (2021), "Tuning shear mechanical properties and tensile strength anisotropy of monolayer black phosphorene: A molecular dynamics study", Materialstoday, 26, 101796. https://doi.org/10.1016/j.mtcomm.2020.101796.
  15. Jam, A., Jam, N., Izadifar, M.R. and Rabczuk, T. (2022), "Molecular dynamics study on the crack propagation in carbon doped polycrystalline boron-nitride nanosheets", Comput. Mater. Sci., 203, 111066. https://doi.org/10.1016/j.commatsci.2021.111066.
  16. Jin-Wu, J. (2015), "Paramitrization of Stillinger-Weber potential based on valevce force field model: Application to single layer MoS2 and black phosphorus", Nanotechnology, 26, 315706. https://doi.org/10.1088/0957-4484/26/31/315706.
  17. Kou, Z.L., Frauenheim, T. and Chen, C.F. (2014), "Phosphorene as a superior gas sensor: Selective adsorption and distinct I-V response", Phys. Chem. Let.t, 5, 2675-2681. https://doi.org/10.1021/jz501188k.
  18. Lee, C., Wei, X. and Kysar, J.W. (2008), "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, 321, 385-388. https://doi.org/10.1126/science.1157996.
  19. Liao, X., Hao, F., Xiao, H. and Chen, X. (2016), "Effects of intrinsic strain on the structural stability and mechanical properties of phosphorene nanotubes", Nanotechnology, 27, 215701. https://doi.org/10.1115/IMECE2016-65911.
  20. Li, W.F., Yang, Y., Zhang, G. and Zhang, Y.W. (2015), "Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery", Nano Lett, 15, 1691-1697. https://doi.org/10.1021/nl504336h.
  21. Liu, H., Neal, A.T. and Ye, P.D. (2012), "Channel length scaling of MoS2 MOSFETs", ACS Nano, 6, 8563-8569. https://doi.org/10.1021/nn303513c.
  22. Liu, P., Pei, Q.X., Huang, W. and Zhang, Y.W. (2017), "Mechanical properties and fracture behaviour of defective phosphorene nanotubes under uniaxial tension", J. Phys. D, 50(48), 485303. https://doi.org/10.1088/1361-6463/aa8f66.
  23. Nguyen, V.T. and Le, M.Q. (2018), "Compressive buckling of black phosphorene nanotubes: an atomistic study", Mater. Res. Exp., 5(4), 045024. https://doi.org/10.1088/2053-1591/aaba53.
  24. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004), "Electric field effect in atomically thin carbon films", Science, 306, 666-669. https://doi.org/10.1126/science.1102896.
  25. Pang, J., Bachmatiuk, A., Yin, Y., Trzebicka, B., Zhao, L., Fu, L., Mendes, R.g., Gemming, T., Liu, Z. and Rummeli, M.H. (2018), "Applications of phosphorene and black phosphorus in energy conversion and storage devices", Adv. Energy Mater., 8, 1702093. https://doi.org/10.1002/aenm.201702093.
  26. Plimpton, S. (1995), "Fast parallel algorithms for short range molecular dynamics", J. Comput. Phys., 117, 1-19. https://doi.org/10.1006/jcph.1995.1039.
  27. Qiao, J., Kong, X., Hu, X .Z., Yang, F. and Ji, W. (2014), "High mobility trasport anisotropy and linear dichroism in few-layer black phosphorus", Nature Commun., 5, 4475. https://doi.org/10.1038/ncomms5475.
  28. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, I.V. and Kis, A. (2011), "Single-layer MoS2 transistors", Nature Nanotech., 6, 147-150. https://doi.org/10.1038/nnano.2010.279.
  29. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  30. Setoodeh, A.R. and Farahmand, H. (2017), "Nonlinear modeling of crystal system transition of black phosphorus using continuum-DFT model", J. Phys. Codensed Matter, 30, 035901. http://doi.org/10.1088/1361-648X/aa99f7.
  31. Sha, Z.D., Pei, Q.X., Zhang, Y.Y. and Zhang, Y.W. (2016), "Atomic vacancies significantly degrade the mechanical properties of phosphorene", Nanotechnology, 27, 315704. https://doi.org/10.1088/0957-4484/27/31/315704.
  32. Shi, J., Cai, H., Cai, K. and Qin, Q.H., (2016), "Dynamic behavior of a black phosphorus and carbon nanotube composite system", J. Phys. D., 50(2), p.025304. https://doi.org/10.1088/1361-6463/50/2/025304.
  33. Sorkin, V. and Zhang, Y.W. (2016), "Mechanical properties of phosphorene nanotubes: a density functional tight-binding study", Nanotechnology, 27, 395701. 10.1088/0957- https://doi.org/4484/27/39/395701.
  34. Venkateshalu, S., Subashini, G., Bhardwaj, P., Jacob, G., Sellappan, R., Raghavan, V., Jain, S., Pandiaraj, S., Natarajan, V., Al Alwan, B.A.M. and Al Mesfer, M.K.M. (2022), "Phosphorene, antimonene, silicene and siloxene based novel 2D electrode materials for supercapacitors-A brief review", J. Energy Storage, 48, 104027. https://doi.org/10.1016/j.est.2022.104027.
  35. Wang, G., Loh, G.C., Pandey, R. and Karna, S.P. (2016), "Out-of-plane structural flexibility of phosphorene", Nanotechnology, 27, 055701. https://doi.org/10.1088/0957-4484/27/5/055701.
  36. Zhu, F., Yin, H., Wei, N. and Wan, J.( 2020), "Numerical study of thermal conductivity based on phosphorene anisotropy: Including [110] direction and related phosphorus nanotubes", Materialstoday, 22, 100814. https://doi.org/10.1016/j.mtcomm.2019.100814.
  37. Zhi, C., Bando, Y., Tang, C., Kuwahara, H. and Golberg, D. (2009), "Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties", Adv. Mater., 21, 2889-2893. https://doi.org/10.1002/adma.200900323.