• 제목/요약/키워드: axial compressive

검색결과 663건 처리시간 0.027초

Theoretical and experimental study on load-carrying capacity of combined members consisted of inner and sleeved tubes

  • Hu, Bo;Gao, Boqing;Zhan, Shulin;Zhang, Cheng
    • Structural Engineering and Mechanics
    • /
    • 제45권1호
    • /
    • pp.129-144
    • /
    • 2013
  • Load-carrying capacity of combined members consisted of inner and sleeved tubes subjected to axial compression was investigated in this paper. Considering the initial bending of the inner tube and perfect elasto-plasticity material model, structural behavior of the sleeved member was analyzed by theoretic deduction, which could be divided into three states: the elastic inner tube contacts the outer sleeved tube, only the inner tube becomes plastic and both the inner and outer sleeved tubes become plastic. Curves between axial compressive loads and lateral displacements of the middle sections of the inner tubes were obtained. Then four sleeved members were analyzed through FEM, and the numerical results were consistent with the theoretic formulas. Finally, experiments of full-scale sleeved members were performed. The results obtained from the theoretical analysis were verified against experimental results. The compressive load-lateral displacement curves from the theoretical analysis and the tests are similar and well indicate the point when the inner tube contacts the sleeved tube. Load-carrying capacity of the inner tube can be improved due to the sleeved tube. This paper provides theoretical basis for application of the sleeved members in reinforcement engineering.

Axial compressive behavior of high strength concrete-filled circular thin-walled steel tube columns with reinforcements

  • Meng Chen;Yuxin Cao;Ye Yao
    • Structural Engineering and Mechanics
    • /
    • 제88권1호
    • /
    • pp.95-107
    • /
    • 2023
  • In this study, circular thin-walled reinforced high strength concrete-filled steel tube (RHSCFST) stub columns with various tube thicknesses (i.e., 1.8, 2.5 and 3.0mm) and reinforcement ratios (i.e., 0, 1.6%, 2.4% and 3.2%) were fabricated to explore the influence of these factors on the axial compressive behavior of RHSCFST. The obtained test results show that the failure mode of RHSCFST transforms from outward buckling and tearing failure to drum failure with the increasing tube thickness. With the tube thickness and reinforcement ratio increased, the ultimate load-carrying capacity, compressive stiffness and ductility of columns increased, while the lateral strain in the stirrup decreased. Comparisons were also made between test results and the existing codes such as AIJ (2008), BS5400 (2005), ACI (2019) and EC4 (2010). It has been found that the existing codes provide conservative predictions for the ultimate load-carrying capacity of RHSCFST. Therefore, an accurate model for the prediction of the ultimate load-carrying capacity of circular thin-walled RHSCFST considering the steel reinforcement is developed, based on the obtained experimental results. It has been found that the model proposed in this study provides more accurate predictions of the ultimate load-carrying capacity than that from existing design codes.

지그재그 보요소를 이용한 응력해석 및 진동해석

  • 이덕규
    • 항공우주기술
    • /
    • 제3권2호
    • /
    • pp.149-159
    • /
    • 2004
  • 축방향 인장 및 압축하중을 받는 점탄성층을 갖는 복합재료 적층보의 동력학적 거동을 해석하였다. 개선된 지그재그 보이론과 지배방정식에 기초한 기하학적 상관식을 이용하여 점탄성층을 갖는 복합재료 적층보를 모델링하였고 이에 기초한 보 유한요소를 개발하였다. 축방향 인장 및 압축하중하의 고유진동수와 감쇠계수는 복소수 유일법을 이용하여 계산하였다. 축방향 인장 및 압축하중이 고유진동수 및 감쇠계수에 미치는 영향을 조사하였다.

  • PDF

불연속 섬유강화 고분자 복합재료의 응력해석에 관한 연구 (A Study on the Stress Analysis of Discontinuous Fiber Reinforced Polymer Matrix Composites)

  • 김홍건
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.101-107
    • /
    • 2008
  • A composite mechanics for discontinuous fiber reinforced polymer matrix composites(PMC) is analysed in order to predict fiber axial stresses. In continuum approach. frictional slip which usually takes place between fibers and polymers is accounted to derive PMC equations. The interfacial friction stress is treated by the product of the coefficient of friction and the compressive stress norma1 to the fiber/matrix interface. The residual stress and the Poisson's contraction implemented by the rule of mixture(ROM) are considered for the compressive stress normal to the fiber/matrix interface. In addition. the effects of fiber aspect ratio and fiber volume fraction on fiber axial stresses are evaluated using the derived equations. Results are illustrated numerically using the present equations with reasonable materials data. It is found that the fiber axial stress in the center region shows no great discrepancy for different fiber aspect ratios and fiber volume fractions while some discrepancies are shown in the fiber end region.

철근콘크리트 벽체 압축단부의 구속효과 (Confinement Effectiveness on Compressive Zone of RC Walls)

  • 김장훈;안상훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.459-464
    • /
    • 2001
  • A great level of strength and deformability on compressive zone of RC wall is essentially required when subjected to high axial and in-plane lateral loading due to earthquakes. One of the best ways to handle this situation is to provide the confinement effectiveness to the compressive zone by reinforcing steel. For this a series of design charts were constructed to evaluate the confinement effectiveness for a given steel configuration in accordance with a well-known model and part of them are presented in this paper. Using the chart, designers can choose a desirable steel arrangement in flexural compressive zone of RC walls for a prescribed confinement factor.

  • PDF

축예하중을 가한 알루미늄/복합재료 동시경화 샤프트의 비틀림 피로 특성 (Torsional Fatigue Characteristics of Aluminum/Composite Co-Cured Shafts with Axial Compressive Preload)

  • Kim, Jong-Woon;Hwang, Hui-Yun;Lee, Dai-Gil
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.183-186
    • /
    • 2003
  • Long shafts for power transmission should transmit torsional load with vibrational stability. Hybrid shafts made of unidirectional fiber-reinforced composite and metal have high fundamental bending natural frequency as well as high torque transmission capability. However, thermal residual stresses due to the coefficient difference of thermal expansion of the composite and metal are developed so that the high residual stresses decrease fatigue resistance of the hybrid shafts, especially at low operating temperatures. In this work, axial compressive preload was given to the shaft in order to change the residual stresses. Static and fatigue torsional tests were performed and correlated with stress analyses with respect to the preload and service temperature.

  • PDF

Applicability of exponential stress-strain models for carbonate rocks

  • Palchik, Vyacheslav
    • Geomechanics and Engineering
    • /
    • 제15권3호
    • /
    • pp.919-925
    • /
    • 2018
  • Stress-strain responses of weak-to-strong carbonate rocks used for tunnel construction were studied. The analysis of applicability of exponential stress-strain models based on Haldane's distribution function is presented. It is revealed that these exponential equations presented in transformed forms allow us to predict stress-strain relationships over the whole pre-failure strain range without mechanical testing of rock samples under compression using a press machine and to avoid measurements of axial failure strains for which relatively large values of compressive stress are required. In this study, only one point measurement (small strain at small stress) using indentation test and uniaxial compressive strength determined by a standard Schmidt hammer are considered as input parameters to predict stress-strain response from zero strain/zero stress up to failure. Observations show good predictive capabilities of transformed stress-stress models for weak-to-strong (${\sigma}_c$ <100 MPa) heterogeneous carbonate rocks exhibiting small (< 0.5 %), intermediate (< 1 %) and large (> 1 %) axial strains.

Behavior of fibre reinforced cementitious material-filled steel tubular columns

  • Kharoob, O.F.;Taman, M.H.
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.465-472
    • /
    • 2017
  • This paper presents an experimental study, investigating the compressive behavior of glass-fibre reinforced and unreinforced cementitious material-filled square steel tubular (GFCMFST and CMFST) columns. The specimens were manufactured by using high performance cementitious materials without using coarse aggregate. The influence of adding glass-fibres to the mix on the behavior of both axially and eccentrically loaded columns is considered. It was found that adding glass fibre improvesthe confinement behavior, the axial compressive strength, the stiffness and the toughness of both axially and eccentrically loaded columns. The compressive strength of axially loaded columns is compared with strength predictions according to EC4 and the AISC specification. It was found that the design predictions according to EC4 and the AISC codes provide conservative results for CMFST and GFCMFST columns. Alternatively, the axial load-bending moment interaction diagrams specified in theEC4 are conservative for the eccentrically tubular CMFST and GFCMFST tested columns.

Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding lines

  • Naghipour, Morteza;Yousofizinsaz, Ghazaleh;Shariati, Mahdi
    • Steel and Composite Structures
    • /
    • 제34권3호
    • /
    • pp.347-359
    • /
    • 2020
  • The objective of this study is to experimentally scrutinize the axial performance of built-up concrete filled steel tube (CFT) columns composed of steel plates. In this case, the main parameters cross section types, compressive strength of filled concrete, and the effect of welding lines. Welded built-up steel box columns are fabricated by connecting two pieces of cold-formed U-shaped or four pieces of L-shaped thin steel plates with continuous penetration groove welding line located at mid-depth of stub column section. Furthermore, traditional square steel box sections with no welding lines are investigated for the comparison of axial behavior between the generic and build-up cross sections. Accordingly, 20 stub columns with thickness and height of 2 and 300 mm have been manufactured. As a result, welding lines in built-up specimens act as stiffeners because have higher strength and thickness in comparison to the plates. Subsequently, by increasing the welding lines, the load bearing capacity of stub columns has been increased in comparison to the traditional series. Furthermore, for specimens with the same confinement steel tubes and concrete core, increment of B/t ratio has reduced the ductility and axial strength.

Effective torsional strength of axially restricted RC beams

  • Taborda, Catia S.B.;Bernardo, Luis F.A.;Gama, Jorge M.R.
    • Structural Engineering and Mechanics
    • /
    • 제67권5호
    • /
    • pp.465-479
    • /
    • 2018
  • In a previous study, design charts where proposed to help the torsional design of axially restricted reinforced concrete (RC) beams with squared cross section. In this article, new design charts are proposed to cover RC beams with rectangular cross section. The influence of the height to width ratio of the cross section on the behavior of RC beams under torsion is firstly shown by using theoretical and experimental results. Next, the effective torsional strength of a reference RC beam is computed for several values and combinations of the study variables, namely: height to width ratio of the cross section, concrete compressive strength, torsional reinforcement ratio and level of the axial restraint. To compute the torsional strength, the modified Variable Angle Truss Model for axially restricted RC beams is used. Then, an extensive parametric analysis based on multivariable and nonlinear correlation analysis is performed to obtain nonlinear regression equations which allow to build the new design charts. These charts allow to correct the torsional strength in order to consider the favourable influence of the compressive axial stress that arises from the axial restraint.