• Title/Summary/Keyword: average torque

Search Result 263, Processing Time 0.028 seconds

New Phase Energization Strategies for the Minimization of Hybrid Step Motor Torque Ripples (하이브리드 스텝모우터의 토오크 리플 최소화를 위한 새로운 상여자방식)

  • Kim, Yoon-Ho;Yoon, Byung-Do;Eum, Tae-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.133-136
    • /
    • 1991
  • New phase-energization strategies are proposed to minimize torque ripple of closed-loop controlled 2-phase Bifilar Hybrid step motors. Lead angle and conduction angles are important parameters in minimizing torque ripple factors. The phase-energization control strategy that minimizes torque ripples for the given average torque is proposed. In this paper, Fourier series are applied to produce the average torque. The strategy is performed by controlling both lead angle and conduction angle of the input voltage wave-form for each phase.

  • PDF

Design of Switched Reluctance Motor for Minimizing the Torque Ripple (스위치드 릴럭턴스 전동기의 토오크 리플 저감 설계)

  • Kim, Youn-Hyun;Choi, Jae-Hak;Kim, Sol;Lee, Ju;RhYu, Se-Hyun;Sung, Ha-Kyung;Im, Tae-Bin;Borm, Jin-hwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.339-350
    • /
    • 2002
  • Pole arcs, turn-on angle, and turn-off angle are major design factors, which affects Switched Reluctance Motor's torque performance. If these design factors are considered independently, the enhancement of SRM performance is restricted. Therefore, we need to consider pole arcs, turn-on angle and turn-off angle at the same time, when we design SR. In this paper, we analyze how these factors affect to torque ripple and average torque by using dynamic Finite Element Method(FEM) with derive circuit and present the good design results according to the various speeds. Especially, we formulate turn-on and turn-off angle from a voltage equation and present effective design range.

The Effects of Different Angles of Wedged Insoles on Knee Varus Torque in Healthy Subjects

  • Jung, Do-Young;Kwon, Oh-Yun;Yi, Chung-Hwi;Kim, Young-Ho;Kim, Jang-Hwan
    • Physical Therapy Korea
    • /
    • v.11 no.4
    • /
    • pp.31-41
    • /
    • 2004
  • The purpose of this study was to examine the effect of the angle of a wedged insole on knee varus torque during walking. Fifteen healthy subjects were recruited. Knee varus torque was measured using three-dimensional motion analysis (Elite). Knee varus torque was normalized to gait cycle (0%: initial contact; 100%: ipsilateral initial contact) and stance phase (0%: initial contact; 100%: ipsilateral toe off). The average peaks of knee varus torque during the stance phase of the gait cycle according to the different insole angles (10 or 15 degrees) were compared using one-way ANOVA with repeated measures. The results showed that in the early stance phase, the average peak knee varus torque increased significantly for both the medial 10 and 15 degree wedged insole conditions and decreased significantly for both the lateral 10 and 15 degree wedged insole conditions as compared with no insole (p<.05). However, there were no significant differences between the 10 and 15 degree wedged insole conditions with either the medial or lateral wedged insole (p>.05). In the late stance phase, the average peak knee varus torque increased significantly for the medial 10 and 15 degree wedged insole conditions (p<.05), but not for the lateral 10 and 15 degree wedged insole conditions as compared with no insole (p>.05). We suggest that these results may be beneficial for manufacturing foot orthotic devices, such as wedged insoles, to control medial and lateral compartment forces in the knee varus-valgus deformity. Further studies of the effects of wedged insole angle on knee varus torque in patients with medial-lateral knee osteoarthritis are needed.

  • PDF

Data Interpolation and Design Optimisation of Brushless DC Motor Using Generalized Regression Neural Network

  • Umadevi, N.;Balaji, M.;Kamaraj, V.;Padmanaban, L. Ananda
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.188-194
    • /
    • 2015
  • This paper proposes a generalized regression neural network (GRNN) based algorithm for data interpolation and design optimization of brushless dc (BLDC) motor. The procedure makes use of magnet length, stator slot opening and air gap length as design variables. Cogging torque and average torque are treated as performance indices. The optimal design necessitates mitigating the cogging torque and maximizing the average torque by varying design variables. The data set for interpolation and ensuing design optimisation using GRNN is obtained by modeling a standard BLDC motor using finite element analysis (FEA) tool MagNet 7.1.1. The performance indices of the standard motor obtained using FEA are validated with an experimental model and an analytical method. The optimal design is authenticated using particle swarm optimization (PSO) algorithm and the performance indices of the optimal design obtained using GRNN is validated using FEA. The results indicate the suitability of GRNN as an interpolation and design optimization tool for a BLDC motor.

Characteristics Analysis for Reduction of Cogging Torque in a Novel Axial Flux Permanent Magnet BLDC Motor (평판형 영구 자석 BLDC 전동기의 코깅 토크 저감은 위한 특성 해석)

  • Jo, Won-Young;Lee, In-Jae;Kim, Byung-Kuk;Kim, Tae-Hyun;Hwang, Dong-Won;Cho, Yun-Hyun;Koo, Dae-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1180-1182
    • /
    • 2005
  • In this paper, the design and field analysis of the novel axial flux type permanent magnet(AFPM) motor with double stator and single rotor are investigated. The various design schemes of AFPM based on 3D finite element method are proposed. The effects of slot shapes, various magnetization of PM, and skewing on the cogging torque and average torque have been investigated in detail. From the results, we can improve the cogging torque and average torque characteristics.

  • PDF

Tilling Load Characteristics and Power Requirement for Rotary Tillers (로우터리 경운(耕耘)의 부하특성(負荷特性) 및 소요동력(所要動力)에 관(関)한 연구(硏究))

  • Choi, Kyu Hong;Ryu, Kwan Hee
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.27-36
    • /
    • 1984
  • This study was carried out to investigate the effects of the tilling depth, tilling travel speed and soil shear stress on the tilling load characteristics and power requirement for rotary tillers. The results obtained from the study are summarized as follows. 1. The average and maximum PTO torque increased as the tilling depth, tilling pitch and soil shear stress increased. A multiple linear regression equation to estimate the average PTO torque in terms of the above parameters was developed. 2. The ratios of maximum PTO torque to the average torque were in the range of 1.17 to 1.65 for the various tilling conditions tested. The variation in PTO torque increased greatly as the tilling pitch and soil shear stress increased, but decreased as the tilling depth increased. 3. Power requirement for the PTO shaft increased with the tilling depth, travel speed and soil shear stress, but decreased slightly as the tilling pitch increased. A multiple linear regression equation to estimate power requirement for the PTO shaft in terms of the above parameters was developed. 4. The specific power requirement for the rotary tiller was in the range of $0.008-0.015ps/cm^2$ for the various tilling conditons tested. The specific tilling capacity decreased as the tilling depth and soil shear stress increased, but increased with the tilling pitch. A multiple linear regression equation to estimate the specific tilling capacity in terms of the above parameters was developed.

  • PDF

Design and Characteristic Analysis for High-speed Interior Permanent Magnet Synchronous Motor with Ferrite Magnet (페라이트 영구자석을 갖는 고속 매입형 영구자석 전동기의 특성해석 및 설계)

  • Park, Hyung-Il;Shin, Kyung-Hun;Yang, Hyun-Sup;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1806-1812
    • /
    • 2016
  • We propose an interior permanent magnet syhchronous motor (IPMSM) with arc-shape ferrite permanent magnets (PMs) as a substitute for the rare-earth permanent magnet, and determine its optimal design through parametric study. First, we use 2D finite element analysis to analyze 4-poles and 6-slots initial model according to performance requirements and design parameters. The current angle of the maximum average torque considered in the analysis is different compared with the current angle of the minimum torque ripple. Thus, the parametric study for optimal rotor design is performed by varying the thickness and the offset radius of the PMs according to current angle. In particular, a narrow bridge is required in conventional IPMSM for reducing flux leakage; however, the increase in cogging torque in the analysis model saturates the narrow bridge (large offset radius). Therefore, we suggest an appropriate shape considering limiting conditions such as DC link voltage, average torque, torque ripple, and cogging torque taking into account performance requirements.

Interaction of internal forces of interior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Jiangli
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.427-443
    • /
    • 2014
  • This paper presents detailed analysis of the internal forces of interior beam-column joints of reinforced concrete (RC) frames under seismic action, identifies critical joint sections, proposes consistent definitions of average joint shear stress and average joint shear strain, derives formulas for calculating average joint shear and joint torque, and reports simplified analysis of the effects of joint shear and torque on the flexural strengths of critical joint sections. Numerical results of internal joint forces and flexural strengths of critical joint sections are presented for a pair of concentric and eccentric interior connections extracted from a seismically designed RC frame. The results indicate that effects of joint shear and torque may reduce the column-to-beam flexural strength ratios to below unity and lead to "joint-yielding mechanism" for seismically designed interior connections. The information presented in this paper aims to provide some new insight into the seismic behavior of interior beam-column joints and form a preliminary basis for analyzing the complicated interaction of internal joint forces.

Measuring the Average Torque according to Exciting Region of Single Phase SRM (단상 SRM의 여자구간에 따른 평균 토크 측정)

  • Kim Yong-Heon;Lee Eun-Woong;Lee Jong-Han;Lee Hyeon-Woo;Kim Jun-ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.989-991
    • /
    • 2004
  • There are many elements that affect the average torque of the single phase SRM. It is related with the stator and rotor pole arcs, the dwell angle of the exciting current, the turn on/off angle, etc., Most of all, the turn on/off angle is affect the design procedure of the driving and control circuit. So, in this study, it is intend to analyze the effect that the variations of the turn on/off angle affects the average torque. and then this analyses will be used to design the control driver of the single phase SRM.

  • PDF

A Comparative Study of Operating Angle Optimization of Switched Reluctance Motor with Robust Speed Controller using PSO and GA

  • Prabhu, V. Vasan;Rajini, V.;Balaji, M.;Prabhu, V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.551-559
    • /
    • 2015
  • This paper's focus is in reducing the torque ripple and increasing the average torque by optimizing switching angles of 8/6 switched reluctance motor while implementing a robust speed controller in the outer loop. The mathematical model of the machine is developed and it is simulated using MATLAB/Simulink. An objective function and constraints are formulated and Optimum turn-on and turn-off angles are determined using Particle swarm optimization and Genetic Algorithm techniques. The novelty of this paper lies in implementing sliding mode speed controller with optimized angles. The results from both the optimization techniques are then compared with initial angles with one of them clearly being the better option. Speed response is compared with PID controller.