• Title/Summary/Keyword: average spectral efficiency

Search Result 55, Processing Time 0.02 seconds

Analytical Evaluation of FFR-aided Heterogeneous Cellular Networks with Optimal Double Threshold

  • Abdullahi, Sani Umar;Liu, Jian;Mohadeskasaei, Seyed Alireza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3370-3392
    • /
    • 2017
  • Next Generation Beyond 4G/5G systems will rely on the deployment of small cells over conventional macrocells for achieving high spectral efficiency and improved coverage performance, especially for indoor and hotspot environments. In such heterogeneous networks, the expected performance gains can only be derived with the use of efficient interference coordination schemes, such as Fractional Frequency Reuse (FFR), which is very attractive for its simplicity and effectiveness. In this work, femtocells are deployed according to a spatial Poisson Point Process (PPP) over hexagonally shaped, 6-sector macro base stations (MeNBs) in an uncoordinated manner, operating in hybrid mode. A newly introduced intermediary region prevents cross-tier, cross-boundary interference and improves user equipment (UE) performance at the boundary of cell center and cell edge. With tools of stochastic geometry, an analytical framework for the signal-to-interference-plus-noise-ratio (SINR) distribution is developed to evaluate the performance of all UEs in different spatial locations, with consideration to both co-tier and cross-tier interference. Using the SINR distribution framework, average network throughput per tier is derived together with a newly proposed harmonic mean, which ensures fairness in resource allocation amongst all UEs. Finally, the FFR network parameters are optimized for maximizing average network throughput, and the harmonic mean using a fair resource assignment constraint. Numerical results verify the proposed analytical framework, and provide insights into design trade-offs between maximizing throughput and user fairness by appropriately adjusting the spatial partitioning thresholds, the spectrum allocation factor, and the femtocell density.

Power Reduction of Multi-Carrier Transmission System by Using Multi-Dimensional Constellation Mappings (효율적 다차원 성상도를 이용한 다중 반송파 전송 시스템의 전력 감소법)

  • Lee, Kyoung-Won;Kim, Jang-Hyun;Kim, Dae-Jin
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.733-741
    • /
    • 2009
  • The design rule of digital communication systems is the reliable data transmission with high spectral efficiency and minimum allowable power. This paper suggests the method that saves the average power by implementing a multi-dimensional constellation in case of multi-carrier communication system. By using multi-dimensional constellations we can relocate constellation points in the form of a sphere. If we simply convert the two-dimensional QAM modulation into multi-dimensional QAM, constellation points of 2 N dimensional cube form are made up. Relocating outermost constellation points of 2 N dimensional cube form into low energy constellation points, the constellation of the 2 N-dimensional sphere form is made up which decreases power consumption. In this paper, the multi-dimensional constellations of 2 N-dimensional sphere form are designed from 16-QAM to 2,048-QAM, and power reductions are obtained by comparing constellations of 2-dimensional QAMs and multi-dimensional constellations of 2 N-dimensional sphere form. The result shows that the average power consumption of higher dimensional constellations increases, because the more a dimension elevates, the more the relocatable constellation points increase. But, the increment of the average power savings decreases as the a dimension elevates. The transmission of the data by using multi-dimensional constellations of the sphere form is effective to save the average power consumption with little hardware complexity.

Modulation Scheme for Network-coded Bi-directional Relaying over an Asymmetric Channel (양방향 비대칭 채널에서 네트워크 부호화를 위한 변조 방식)

  • Ryu, Hyun-Seok;Kang, Chung-G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2B
    • /
    • pp.97-109
    • /
    • 2012
  • In this paper, we propose a modulation scheme for a network-coded bi-directional relaying (NBR) system over an asymmetric channel, which means that the qualities of the relay channel (the link between the BS and RS) and access channel (the link between the RS and MS) are not identical. The proposed scheme employs a dual constellation in such a way that the RS broadcasts the network-coded symbols modulated by two different constellations to the MS and BS over two consecutive transmission intervals. We derive an upper bound on the average bit error rate (BER) of the proposed scheme, and compare it with the hybrid constellation-based modulation scheme proposed for the asymmetric bi-directional link. Furthermore, we investigate the channel utilization of the existing bi-directional relaying schemes as well as the NBR system with the proposed dual constellation diversity-based modulation (DCD). From our simulation results, we show that the DCD gives better average BER performance about 3.5~4dB when $E_b/N_0$ is equal to $10^{-2}$, while maintaining the same spectral efficiency as the existing NBR schemes over the asymmetric bi-directional relaying channel.

Performance Analysis of Dualrate MC-CDMA Systems Based on Code Grouping (코드그룹화에 의한 이중전송률 MC-CDMA 시스템의 성능분석)

  • Kim, Nam-Sun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.4
    • /
    • pp.112-120
    • /
    • 2006
  • Multicarrier code division multiple access(MC-CDMA) system that combines multicarrier modulation with CDMA offers robustness to frequency selective fading and can support higher rate data transmission with higher spectral efficiency. A new asynchronous MC-CDMA system to implement multiple data rate communications is proposed in this paper. In a W-CDMA downlink the orthogonal variable spreading factor(OVSF) code is used for variable spreading factor for various multimedia traffic. Proposed system utilizes the OVSF code that generated by generation property for spreading. The proposed MC-CDMA system use different lengths of OVSF code as a spreading code according to their data rate. The groupwise processing is accomplished by code grouping in OVSF code generation tree. For the analysis of average BER performance, numerical method and computer simulation were used. We also compare the system performance with that of a single rate MC-CDMA system used orthogonal code as a spreading code.

  • PDF

Efficient Link Adaptation Scheme using Precoding for LTE-Advanced Uplink MIMO (LTE-Advanced에서 프리코딩에 의한 효율적인 상향링크 적응 방식)

  • Park, Ok-Sun;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2B
    • /
    • pp.159-167
    • /
    • 2011
  • LTE-Advanced system requires uplink multi-antenna transmission in order to achieve the peak spectral efficiency of 15bps/Hz. In this paper, the uplink MIMO system model for the LTE-Advanced is proposed and an efficient link adaptation shceme using precoding is considered providing error rate reduction and system capacity enhancement. In particular, the proposed scheme determines a transmission rank by selecting the optimal wideband precoding matrix, which is based on the derived signal-to-interference and noise ratio (SINR) for the minimum mean squared error (MMSE) receivers of $2{\times}4$ multiple input multiple output (MIMO). The proposed scheme is verified by simulation with a practical MIMO channel model. The simulation results of average block-error-rate(BLER) reflect that the gain due to the proposed rank adapted transmission over full-rank transmission is evident particularly in the case of lower modulation and coding scheme (MCS) and high mobility, which means the severe channel fading environment.

Orthogonal Frequency Division Multiple Access with Statistical Channel Quality Measurements Part-II: Performance Analysis (통계적 채널 Quality 정보를 이용한 직교 주파수분할 다중접속(OFDMA) Part-II: 성능분석)

  • Yoon, Seo-Khyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.110-118
    • /
    • 2006
  • In part-I of the paper, two sub-channel structures, either contiguous or distributed, were considered. Modeling the SNR distribution over a sub-channel as Ricean in general, the statistical chracteristics were investigated. In this part of the paper, we develop a generalized two step channel/resource allocation algorithm, which incorporates the two statistical measurements, and analyze the spectral efficiency of OFDMA in terms of average frequency utilization for the two sub-channel structures. In OFDMA with distributed structure, the key design parameter would be the sub-channel bandwidth. To give an insight into the impact on this parameter, we show in the numerical results the frequency utilization as a function of sub-channel bandwidth normalized to coherence bandwidth. As confirmed by numerical results, for contiguous sub-channel structure, we obtain the nominal multiuser diversity gain when the sub-channel bandwidth is smaller than the coherence bandwidth and lose the gain as it is getting larger.

Orthogonal Frequency Division Multiple Access with Statistical Channel Quality Measurements Part-I: System and Channel Modeling (통계적 채널 Quality 정보를 이용한 직교 주파수분할 다중접속(OFDMA) Part-I: 시스템 및 채널 모델링)

  • Yoon, Seo-Khyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.119-127
    • /
    • 2006
  • In this two-part paper, we consider dynamic resource allocation in orthogonal frequency division multiple access(OFDMA). To reduce the reverse link overhead for channel quality information(CQI) feedback, a set of sub-carriers are tied up to a sub-channel to be used as the unit of CQI feedback, user-multiplexing and the corresponding power/rate allocation. Specifically, we focus on two sub-channel structures, either aggregated or distributed, where the SNR distribution over a sub-channel is modeled as Ricean in general, and the channel quality of a sub-channel is summarized as the mean and variance of channel gain envelop divided by noise standard deviation. Then, we develop a generalized two step channel/resource allocation algorithm, which uses the two statistical measurements, and analyze the spectral efficiency of the OFDMA system in terms of average frequency utilization. An extension to proportional fair algorithm will also be addressed. As confirmed by numerical results, the aggregated structure is preferred especially when intending aggressive link adaptation.

OFDM Communication System Based on the IMD Reduction Method (IMD 저감 방식을 기반으로 하는 OFDM 통신 시스템)

  • Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.10
    • /
    • pp.1172-1180
    • /
    • 2007
  • OFDM system has very good high spectral efficiency and the robustness to the frequency-selective fading. Because of the high PAPR, OFDM signals can be distorted in nonlinear HPA(High Power Amplifier). So, to overcome the nonlinear distortion, it is very important to reduce the IMD value. With respect to the BER performance, IMD reduction method is better than the PAPR reduction method. However, IMD reduction method has much more system complexity because of the additional FFT processor in transmitter. In this paper, we study the OFDM communication system based on the IMD reduction method using SPW method. A new IMD reduction method is proposed to reduce the computational complexity. SPW method is to divide the input OFDM data into several sub-blocks and to multiply phase weighting values with each sub-blocks for the reduction of PAPR or IMD. Unlike the conventional method, the system size and computational complexity can be reduced.

Ultra Wide Area Wireless Backhaul Network System Based on Large Scale Array Antenna (대형 어레이 안테나 기반 초광역 무선 백홀망 시스템)

  • Go, SeongWon;Kim, Hyoji;Lee, Ju Yong;Cho, Dong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1354-1362
    • /
    • 2015
  • Heterogeneous network technology is expected to be a core technology for 5G mobile communications. 5G mobile network would be composed of many base stations even have mobility, then the operator should connect base stations through the wireless backhaul technology. This paper presents Ultra Wide Area Wireless Backhaul Network System with massive array antenna. We conducted link budget analysis for Ultra Wide Area Wireless Backhaul Network and performance analysis of massive array antenna system through the transmission simulator based on beamforming technology. In wide area ($10km^2$) wireless backhaul system composed of massive antenna, we achieved 5 bps/Hz average spectral efficiency with 1 W transmission power per beam.

Performance of Network Coding with Best Relay Selection in Fading Channels (페이딩 채널에서 최선 릴레이 선택을 갖는 네트워크 코딩의 성능)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.193-200
    • /
    • 2013
  • Recently, network coding has been actively studied to increase the spectral efficiency of two-way relay wireless channels such as cellular systems as well as broadcasting systems. In this paper, we derive the average transmission capacity and the outage probability of a network coding system, which utilizes two-way data transmission via the best relay rather than multiple relays. Since the data unbalance between the forward and the reverse link in two-way communication systems exists, we include the asymmetric link as well as the symmetric link in the analysis. It is noticed that the space diversity gain increases as the increase of the number of relays. Also we obtain 11.4 dB signal-to-noise ratio (SNR) gain with 9 relays compared to that with single relay in symmetrical link at the given conditions. In asymmetrical links, we denotes that the outage probability is more sensitive to the number of relays rather than data unbalance between the links.