• Title/Summary/Keyword: average sampling interval

Search Result 76, Processing Time 0.025 seconds

Comparison of EWMA and CUSUM Charts with Variable Sampling Intervals for Monitoring Variance-Covariance Matrix

  • Chang, Duk-Joon
    • Journal of Integrative Natural Science
    • /
    • v.13 no.4
    • /
    • pp.152-157
    • /
    • 2020
  • To monitor all elements simultaneously of variance-covariance matrix Σ of several correlated quality characteristics under multivariate normal process Np($\underline{\mu}$, Σ), multivariate exponentially weighted moving average (EWMA) chart and cumulative sum (CUSUM) chart are considered and compared. Numerical performances of the considered variable sampling interval (VSI) charts are evaluated using average run length (ARL), average time to signal (ATS), average number of switches (ANSW) to signal, and the probability of switch Pr(switch) between two sampling interval d1 and d2 where d1 < d2. For small or moderate changes of Σ, the performances of multivariate EWMA chart is approximately equivalent to that of multivariate CUSUM chart.

Economic Design of Variable Sampling Interval X Control Chart Using a Surrogate Variable (대용변수를 이용한 가변형 부분군 채취 간격 X 관리도의 경제적 설계)

  • Lee, Tae-Hoon;Lee, Jooho;Lee, Minkoo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.5
    • /
    • pp.422-428
    • /
    • 2013
  • In many cases, an $\bar{X}$ control chart which is based on the performance variable is used in industrial fields. However, if the performance variable is too costly or impossible to measure and a less expensive surrogate variable is available, the process may be more efficiently controlled using surrogate variables. In this paper, we propose a model for the economic design of a VSI (Variable Sampling Interval) $\bar{X}$ control chart using a surrogate variable that is linearly correlated with the performance variable. The total average profit model is constructed, which involves the profit per cycle time, the cost of sampling and testing, the cost of detecting and eliminating an assignable cause, and the cost associated with production during out-of-control state. The VSI $\bar{X}$ control charts using surrogate variables are expected to be superior to the Shewhart FSI (Fixed Sampling Interval) $\bar{X}$ control charts using surrogate variables with respect to the expected profit per unit cycle time from economic viewpoint.

Switching properties of bivariate Shewhart control charts for monitoring the covariance matrix

  • Gwon, Hyeon Jin;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1593-1600
    • /
    • 2015
  • A control chart is very useful in monitoring various production process. There are many situations in which the simultaneous control of two or more related quality variables is necessary. We construct bivariate Shewhart control charts based on the trace of the product of the estimated variance-covariance matrix and the inverse of the in-control matrix and investigate the properties of bivariate Shewart control charts with VSI procedure for monitoring covariance matrix in term of ATS (Average time to signal) and ANSW (Average number of switch) and probability of switch, ASI (Average sampling interval). Numerical results show that ATS is smaller than ARL. From examining the properties of switching in changing covariances and variances in ${\Sigma}$, ANSW values show that it does not switch frequently and does not matter to use VSI procedure.

Switching properties of multivariate Shewhart control charts

  • Kim, Bo-Jung;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.911-925
    • /
    • 2017
  • We investigate the properties of multivariate Shewart control charts with VSI procedure for monitoring simultaneous monitoring mean vector and covariance matrix in term of ANSW (average number of switches), probability of switch and ASI (average sampling interval), ATS (average time to signal). From examining the ANSW values, we know that it does not switch frequently. The VSI control charts are superior to the corresponding FSI control charts in terms of ATS. And, it can be also seen that the VSI procedures have substantially fewer switches for small or moderate shifts of the mean vector and variances.

Cumulative Sum Control Charts for Simultaneously Monitoring Means and Variances of Multiple Quality Variables

  • Chang, Duk-Joon;Heo, Sunyeong
    • Journal of Integrative Natural Science
    • /
    • v.5 no.4
    • /
    • pp.246-252
    • /
    • 2012
  • Multivariate cumulative sum (CUSUM) control charts for simultaneously monitoring both means and variances under multivariate normal process are investigated. Performances of multivariate CUSUM schemes are evaluated for matched fixed sampling interval (FSI) and variable sampling interval (VSI) features in terms of average time to signal (ATS), average number of samples to signal (ANSS). Multivariate Shewhart charts are also considered to compare the properties of multivariate CUSUM charts. Numerical results show that presented CUSUM charts are more efficient than the corresponding Shewhart chart for small or moderate shifts and VSI feature with two sampling intervals is more efficient than FSI feature. When small changes in the production process have occurred, CUSUM chart with small reference values will be recommended in terms of the time to signal.

A Comparison of Average Time Rate with range and variance chart when using variable sampling interval (변량표본추출간격을 이용한 범위관리도와 분산관리도의 ATS비교)

  • 이희춘;지선수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.30
    • /
    • pp.101-106
    • /
    • 1994
  • The basic of the VSI charts is that if the sample statistic computed after a sample is taken shows some indication of a process change than the sampling interval before the next sample should be short otherwise long. This paper was shown the VSS chart can be considerably more efficient than the FSS chart and the effectiveness of VSI R chart with S chart used for monitoring a process standard deviation.

  • PDF

Variable Sampling Interval $\bar{X}$ Control Chart Using Weighted Standard Deviation Method (가중표준편차를 이용한 가변표본채취간격 $\bar{X}$ 관리도)

  • Chang, Youngsoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • This article proposes a variable sampling interval (VSI) $\bar{X}$ control chart using weighted standard deviation (WSD) method for skewed populations. The WSD method decomposes the standard deviation of a quality characteristic into upper and lower deviations and adjusts control limits and warning limits of a control chart in accordance with the direction and degree of skewness. A control chart constant is derived for estimating the standard deviation of skewed distributions with the mean of sample standard deviations. The proposed chart is compared with the conventional VSI $\bar{X}$ control chart under some skewed distributions. Simulation study shows that the proposed WSD VSI chart can control the in-control average time to signal (ATS) as an adequate level better than the conventional VSI chart, and the proposed chart can detect a decrease in the process mean of a quality characteristic following a positively skewed distribution more quickly than the standard VSI chart.

An Economic Design of the Chart with Variable Sample Size Scheme

  • Park, Chang-Soon;Ji, Seon-Su
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.2
    • /
    • pp.403-420
    • /
    • 1994
  • An economic design of the $\bar{X}-R$ chart using variable sample size (VSS) scheme is proposed in this paper. In this design the sample size at each sampling time changes according to the values of the previous two sample statistics, sample mean and range. The VSS scheme uses large sample if the sample statistics appear near inside the control limits and smaller sample otherwise. The set of process parameters, such as the sampling interval, control limits and the sample sizes, are chosen to minimize the expected cost per hour. The efficiency of the VSS scheme is compared to the fixed sample size one for cases where there is multiple of assignable causes. Percent reductions of the expected cost in the VSS design are calculated for some given sets of cost parameters. It is shown that the VSS scheme improves the confidence of the procedure and performs statistically better in terms of the number of false alarms and the average time to signal, respectively.

  • PDF

Multivariate Shewhart control charts with variable sampling intervals (가변추출간격을 갖는 다변량 슈하르트 관리도)

  • Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.999-1008
    • /
    • 2010
  • The objective of this paper is to develop variable sampling interval multivariate control charts that can offer significant performance improvements compared to standard fixed sampling rate multivariate control charts. Most research on multivariate control charts has concentrated on the problem of monitoring the process mean, but here we consider the problem of simultaneously monitoring both the mean and variability of the process.

Switching performances of multivarite VSI chart for simultaneous monitoring correlation coefficients of related quality variables

  • Chang, Duk-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.451-459
    • /
    • 2017
  • There are many researches showing that when a process change has occurred, variable sampling intervals (VSI) control chart is better than the fixed sampling interval (FSI) control chart in terms of reducing the required time to signal. When the process engineers use VSI control procedure, frequent switching between different sampling intervals can be a complicating factor. However, average number of samples to signal (ANSS), which is the amount of required samples to signal, and average time to signal (ATS) do not provide any control statistics about switching performances of VSI charts. In this study, we evaluate numerical switching performances of multivariate VSI EWMA chart including average number of switches to signal (ANSW) and average switching rate (ASWR). In addition, numerical study has been carried out to examine how to improve the performance of considered chart with accumulate-combine approach under several different smoothing constant and sample size. In conclusion, process engineers, who want to manage the correlation coefficients of related quality variables, are recommended to make sample size as large and smoothing constant as small as possible under permission of process conditions.