• Title/Summary/Keyword: average error

Search Result 2,646, Processing Time 0.028 seconds

The Buck DC-DC Converter with Non-Linear Instantaneous Following PWM Control Method (비선형 순시추종형 PWM 제어기법을 적용한 강압형 DC-DC 컨버터)

  • Kim Sang-Don;Ra Byung-Hun;Lee Hyun-Woo;Kim Kwang-Tae
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.470-475
    • /
    • 2002
  • Instantaneous following PWM control technique is pulsed nonlinear dynamic control method. This new control technique using analog integrator is proposed to control the duty ratio D of do-dc converter. In this control method, the duty ratio of a switch is exactly equal In or proportional to the control reference in the steady state or in a transient. Proposed control method compensates power source perturbation in one switching cycle, and the average value of the dynamic reference in one switching cycle. There is no steady state error nor dynamic error between the control reference and the average value of the switched variable. Experiments with buck converter have demonstrated the robustness of the control method and verified theoretical prediction. The control method is very general and applicable to all type PWM

  • PDF

BER Performance of OFDM Combined with TDM Using Frequency-Domain Equalization

  • Gacanin, Haris;Takaoka, Shinsuke;Adachi, Fumiyuki
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.34-42
    • /
    • 2007
  • Orthogonal frequency division multiplexing (OFDM) combined with time division multiplexing (TDM), in this paper called OFDM/TDM, can overcome the high peak-to-average-power ratio (PAPR) problem of the conventional OFDM and improve the robustness against long time delays. In this paper, the bit error rate (BER) performance of OFDM/FDM in a frequency-selective Rayleigh fading. channel is evaluated by computer simulation. It is shown that the use of frequency-domain equalization based on minimum mean square error criterion (MMSE-FDE) can significantly improve the BER performance, compared to the conventional OFDM, by exploiting the channel frequency-selectivity while reducing the PAPR or improving the robustness against long time delays. It is also shown that the performance of OFDM/FDM designed to reduce the PAPR can bridge the conventional OFDM and single-carrier (SC) transmission by changing the design parameter.

Characteristic Analysis of Buck Converter by using the Non-Linear Instantaneous Following PWM Controller (강압형 컨버터의 비선형 순시추종 PWM 제어기의 특성 분석)

  • Ra, Byung-Hun;Kim, Sang-Don;Kwon, Soon-Kurl;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.378-381
    • /
    • 2002
  • Instantaneous following PWM control technique is pulsed nonlinear dynamic control method. This new control technique using analog integrator is proposed to control the duty ratio D of DC-DC converter. In this control method, the duty ratio of a switch is exactly equal to or proportional to the control reference in the steady state or in a transient. Proposed control method compensates power source perturbation in one switching cycle, and the average value of the dynamic reference in one switching cycle. There is no steady state error nor dynamic error between the control reference and the average value of the switched variable. Experiments with buck converter have demonstrated the robustness of the control method and verified theoretical prediction. The control method is very general and applicable to all type PWM.

  • PDF

ABEP Performance of ISDF Relaying M2M Cooperative Networks

  • Xu, Lingwei;Wang, Jingjing;Wang, Han;Gulliver, T. Aaron
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5129-5148
    • /
    • 2016
  • In this paper, the average bit error probability (ABEP) performance of the incremental-selective decode-and-forward (ISDF) relaying mobile-to-mobile (M2M) cooperative networks over N-Nakagami fading channels is investigated. The exact ABEP expressions are derived, and the power allocation problem is formulated.The derived ABEP expressions are verified by Monte Carlo simulations. The simulation results showed that the propagation parameters, such as the fading coefficient, and the power-allocation parameter, have a significant influence on the ABEP performance.

A Study on Co-Channel Interference of FH Spread Spectrum Communications (대역확산통신에서 FH무전기의 상호간섭연구)

  • Choe Eun-Jae;Kim Je-Yeong;Yun Byeong-Chang;Bae Hyeon-Ung;Lee Si-Chang
    • Journal of the military operations research society of Korea
    • /
    • v.16 no.2
    • /
    • pp.118-134
    • /
    • 1990
  • This paper considers the mutual interference problem of several users employing the same FH systems in selected multiple user environments. The environment consists of a desired transmitter-receiver pair located in an area where there are M interfering users distributed in accordance with a specified probability density function. Both coherent Phase-Shift-Keyed and incoherent Frequencey-Shift-Keyed modulations are considered. The general formulas of the average bit error probability are derived. The calculation results are summarized and analyzed. The average bit error probability is highly dependent on the relative location of interferences to the desired link, the time duty factor of the hopping and the number of available channels.

  • PDF

Location Estimation Enhancement Using Space-time Signal Processing in Wireless Sensor Networks: Non-coherent Detection

  • Oh, Chang-Heon
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.269-275
    • /
    • 2012
  • In this paper, we proposed a novel location estimation algorithm based on the concept of space-time signature matching in a moving target environment. In contrast to previous fingerprint-based approaches that rely on received signal strength (RSS) information only, the proposed algorithm uses angle, delay, and RSS information from the received signal to form a signature, which in turn is utilized for location estimation. We evaluated the performance of the proposed algorithm in terms of the average probability of error and the average error distance as a function of target movement. Simulation results confirmed the effectiveness of the proposed algorithm for location estimation even in moving target environment.

Instantaneous Following PWM Control Strategy of Cuk Converter Using Integrator (적분기를 이용한 Cuk 컨버터의 순시추종형 PWM 제어)

  • Shon, Je-Bong;Jeong, Soon-Yang;Kim, Kwang-Tae;Lee, Woo-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.103-105
    • /
    • 2002
  • Instantaneous following PWM control technique is pulsed nonlinear dynamic control method. This new control technique using analog integrator is proposed to control the duty ratio D of Cuk converter. In this control method, the duty ratio of a switch is exactly equal to or proportional to the control reference in the steady state or in a transient. Proposed control method compensates power source perturbation in one switching cycle, and the average value of the dynamic reference in one switching cycle. There is no steady state error nor dynamic error between the control reference and the average value of the switched variable. Experiments with Cuk converter have demonstrated the robustness of the control method and verified theoretical prediction. The control method is very general and applicable to all type PWM.

  • PDF

Performance of CDMA system in the Extended Suzuki Model of LEO Satellite (저궤도 위성의 Extended Suzuki 모델에서 CDMA 시스팀의 성능)

  • 박성조
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10A
    • /
    • pp.1521-1528
    • /
    • 2000
  • In this paper we analyze the performance of a DS/CDMA system in LEO mobile satellite channels. The channel uses the Extended Suzuki model which is the product of a Rician distribution having a LOS component and a lognormal distribution due to shadowing. We assume that the signal transmitted from the satellite to the mobile undergoes the same fading for the whole coverage of signal's beam. The average bit error probabilities of double coverage system is calculated in this paper. The interference resulting from the reference satellite is calculated for mobile located in the middle of the double coverage region whereas the additive interference from next-satellite is included for mobile located in the edge of the double coverage region. The performance of the mobile's receiving signal is dependent on shadowing and the interference of the next-satellite. We can obtain an obtain an improved average bit error probability by using dual diversity over the conventional correlated receiver for similar shadowing conditions in the coverage area of the satellite channel.

  • PDF

The Study on Nonlinear Compensation Characteristics of Multi-tap Update Algorithm in Broadband PCS Channel

  • Lee, Seung-Dae
    • Journal of the Korea Computer Industry Society
    • /
    • v.9 no.2
    • /
    • pp.77-82
    • /
    • 2008
  • The diversity reception and the equal gain combining technique are applied to the compensation of the distortion of channel, which occurs in transmission of data at rapid speed. DSSS BPSK system which has the receiving structure with the compensation algorithm is formed on the diversity branch, and the characteristics of the system are evaluated at the view point of the average bit error rate due to the SNR. In addition, the multi-tap update algorithm which is superior for the data compensation is suggested. Moreover, using the American Joint Technical Committee PCS RF channel characterization and system deployment model standard, the suggested multi-tap update algorithm is compared and analyzed with the view-point of the average bit error rate and convergence speed for evaluating the realistic efficiency of the system.

  • PDF

Performance Analysis of an AF Dual-hop FSO Communication System with RF Backup Link

  • Alhamawi, Khaled A.;Altubaishi, Essam S.
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.311-319
    • /
    • 2019
  • A hybrid free-space-optical/radio-frequency (FSO/RF) communication system is considered, with the help of amplify-and-forward (AF) relaying. We consider various weather conditions to investigate their effects on the system's performance. We begin by obtaining the cumulative distribution function and probability density function of the end-to-end signal-to-noise ratio for the AF dual-hop FSO communication system with RF backup link. Then, these results are used to derive closed-form expressions for the outage probability, average bit-error rate, and average ergodic capacity. The results show that the considered system efficiently employs the complementary nature of FSO and RF links, resulting in impressive performance improvements compared to non-hybrid systems.