• Title/Summary/Keyword: available power

Search Result 1,805, Processing Time 0.026 seconds

Power Saving and Improving the Throughput of Spectrum Sharing in Wideband Cognitive Radio Networks

  • Li, Shiyin;Xiao, Shuyan;Zhang, Maomao;Zhang, Xiaoguang
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.394-405
    • /
    • 2015
  • This paper considers a wideband cognitive radio network which can simultaneously sense multiple narrowband channels and thus aggregate the detected available channels for transmission and proposes a novel cognitive radio system that exhibits improved sensing throughput and can save power consumption of secondary user (SU) compared to the conventional cognitive radio system studied so far. More specifically, under the proposed cognitive radio system, we study the problem of designing the optimal sensing time and power allocation strategy, in order to maximize the ergodic throughput of the proposed cognitive radio system under two different schemes, namely the wideband sensing-based spectrum sharing scheme and the wideband opportunistic spectrum access scheme. In our analysis, besides the average interference power constraint at primary user, the average transmit power constraint of SU is also considered for the two schemes and then a subgradient algorithm is developed to obtain the optimal sensing time and the corresponding power allocation strategy. Finally, numerical simulations are presented to verify the performance of the two proposed schemes.

Low Power Trace Cache for Embedded Processor

  • Moon Je-Gil;Jeong Ha-Young;Lee Yong-Surk
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.204-208
    • /
    • 2004
  • Embedded business will be expanded market more and more since customers seek more wearable and ubiquitous systems. Cellular telephones, PDAs, notebooks and portable multimedia devices could bring higher microprocessor revenues and more rewarding improvements in performance and functions. Increasing battery capacity is still creeping along the roadmap. Until a small practical fuel cell becomes available, microprocessor developers must come up with power-reduction methods. According to MPR 2003, the instruction and data caches of ARM920T processor consume $44\%$ of total processor power. The rest of it is split into the power consumptions of the integer core, memory management units, bus interface unit and other essential CPU circuitry. And the relationships among CPU, peripherals and caches may change in the future. The processor working on higher operating frequency will exact larger cache RAM and consume more energy. In this paper, we propose advanced low power trace cache which caches traces of the dynamic instruction stream, and reduces cache access times. And we evaluate the performance of the trace cache and estimate the power of the trace cache, which is compared with conventional cache.

  • PDF

Audio fingerprint matching based on a power weight (파워 가중치를 이용한 오디오 핑거프린트 정합)

  • Seo, Jin Soo;Kim, Junghyun;Kim, Hyemi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.716-723
    • /
    • 2019
  • Fingerprint matching accuracy is essential in deploying a music search service. This paper deals with a method to improve fingerprint matching accuracy by utilizing an auxiliary information which is called power weight. Power weight is an expected robustness of each hash bit. While the previous power mask binarizes the expected robustness into strong and weak bits, the proposed method utilizes a real-valued function of the expected robustness as weights for fingerprint matching. As a countermeasure to the increased storage cost, we propose a compression method for the power weight which has strong temporal correlation. Experiments on the publicly-available music datasets confirmed that the proposed power weight is effective in improving fingerprint matching performance.

Review on the New Fire Protection Standard for Nuclear Power Plants and Investigation for the Applicability of the Performance-Based Fire Modeling

  • Jee, Moon-Hak;Hong, Sung-Yull;Sung, Chang-Kyung;Kim, In-Hwang
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.259-267
    • /
    • 2002
  • NFPA-803 has been referred as the Fire Protection Standard at the Nuclear Power Plants of Pressurized Water Reactor. This Standard has been used as the fire protection regulation, containing prescriptive requirements with deterministic methodology. Recently, with cumulative efforts by the U.S. Nuclear Regulatory Commission and Utilities in America to establish a new Standard, including a quantitative evaluation methodology, NFPA-805, the Performance-Based Standard for FIRE Protection for Light Water Reactor Electric Generating Plants was issued and approved by the American National Standards Institute as an American National Standard with an effective date of February 9, 2001. This paper presents an analysis result from the computer modeling for the fire simulation In addition, it proposes the idea that this kind of analytic method can be available for the facilities design of fire prevention and protection fields, as well as an evaluation for the fire suppression system with a quantitative analysis for the thermal phenomena in fire compartments in Nuclear Power Plants.

Design of Vibration Harvesting Circuit using the MPPT control (MPPT 제어 기능을 갖는 진동에너지 하베스팅 회로 설계)

  • Park, Joon-Ho;Yun, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.392-395
    • /
    • 2011
  • In this paper, a vibration energy harvesting circuit using the piezoelectric element has been designed. MPPT (maximum power point tracking control) control function has been implemented to deliver the maximum power to the load by using the electric power-voltage characteristic of the piezoelectric element. The designed MPPT circuit traces the maximum power point by sampling periodically the open circuit voltage of the full wave rectifier circuit and delivers the maximum available power to the load. The vibration energy harvesting circuit is designed with $0.18{\mu}m$ CMOS process. The maximum power efficiency is 91%, and the chip area except pads is $1,100{\mu}m{\times}730{\mu}m$.

  • PDF

Characteristics of Spontaneous Combustion of Various Fuels for Coal-Fired Power Plant by Carbonization Rank

  • Kim, Jae-kwan;Park, Seok-un;Shin, Dong-ik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.83-92
    • /
    • 2019
  • Spontaneous combustion propensity of various coals of carbonization grade as a pulverized fuel of coal-fired power plant has been tested from an initial temperature of $25^{\circ}C$ to $600^{\circ}C$ by heating in an oven with air to analyze the self-oxidation starting temperature. These tests produce CPT (Cross Point Temperature), IT (Ignition temperature), and CPS (Cross Point Slope) calculated as the slope of time taken for a rapid exothermic oxidation reaction at CPT base. CPS shows a carbonization rank dependence whereby wood pellet has the highest propensity to spontaneous combustion of $20.995^{\circ}C/min$. A sub-bituminous KIDECO coal shows a CPS value of $15.370^{\circ}C/min$, whereas pet coke has the highest carbonization rank at $2.950^{\circ}C/min$. The nature of this trend is most likely attributable to a concentration of volatile matter and oxygen functional groups of coal surface that governs the available component for oxidation, as well as surface area of fuel char, and constant pressure molar heat.

POWER UPRATES IN NUCLEAR POWER PLANTS: INTERNATIONAL EXPERIENCES AND APPROACHES FOR IMPLEMENTATION

  • Kang, Ki-Sig
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.255-268
    • /
    • 2008
  • The greater demand for electricity and the available capacity within safety margins in some operating NPPs are prompting nuclear utilities to request license modification to enable operation at a higher power level, beyond their original license provisions. Such plant modifications require an in-depth safety analysis to evaluate the possible safety impact. The analysis must consider the thermo hydraulic, radiological and structural aspects, and the plant behavior, while taking into account the capability of the structures, systems and components, and the reactor protection and safeguard systems set points. The purpose of this paper is to introduce international experiences and approaches for implementation of power uprates related to the reactor thermal power of nuclear power plants. The paper is intended to give the reader a general overview of the major processes, work products, issues, challenges, events, and experiences in the power uprates program. The process of increasing the licensed power level of a nuclear power plants is called a power uprate. One way of increasing the thermal output from a reactor is to increase the amount of fissile material in use. It is also possible to increase the core power by increasing the performance of the high power bundles. Safety margins can be maintained by either using fuels with a higher performance, or through the use of improved methods of analysis to demonstrate that the required margins are retained even at the higher power levels. The paper will review all types of power uprates, from small to large, and across various reactor types, including light and heavy water, pressurized, and boiling water reactors. Generally, however, the content of the report focuses on power uprates of the stretch and extended type. The International Atomic Energy Agency (IAEA) is developing a technical guideline on power uprates and side effects of power uprates in nuclear power plants.

A Study on Analysis of Reserves and Available Capacity of Unutilized Energy in Rural Community (농어촌지역 미활용에너지의 부존량과 이용 가능량 분석)

  • Park, Mi-Lan;Ryoo, Yeon-Su;Kim, Jin-Wook;Lee, Yong-Uk;Bae, Sung-Don;Chae, Kap-Byung
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.19-25
    • /
    • 2014
  • Alternative sources of energy take a higher interest in order to reduce the greenhouse gas under the Climate Change Convention, fossil fuel consumption, and lower social anxiety about nuclear power such as crisis involving the Fukushima plant, problem of obsolete equipment. The energy consumption of agriculture, forestry and fisheries in South Korea is 3,082,000toe by 2011, reliance on electrical energy(35%) and oil(57.2%) is very high with 92.2%. In this study, we examined reserves and available capacity of temperature difference energy for thermal discharge from plant, treated sewage, river water, dam, and agricultural reservoir in rural community. Reserves of unutilized energy are 455,735Tcal/yr in rural community, these accounts for 78% of total reserves 582,385Tcal/y. Thermal discharge from plant has the most reserves of unutilized energy in rural community, it is estimated that it has the reserves of 277,410Tcal/y. Available capacity of unutilized energy in rural community is total 134,147Tcal/y, thermal discharge from plant available for heating is the most 128,035Tcal/y, and it shows in the order of treated sewage 4,318Tcal/y, river water 1,653Tcal/y, and reservoir 141Tcal/y. Elevating temperature area of green house by 2012 is 21,208ha. The amount of energy required for heating the greenhouse a year is dbout 11,365Tcal/y with 8.5% of the total available capacity of unutilized energy.

Analysis Result for the Technical Development Reducing Standby Power in Domestic Major Electric Appliances : The Electricity Energy Saving Effect (국내 주요 가전제품의 대기전력저감기술 성과 분석 : 에너지절약 효과를 중심으로)

  • Lee, Eun-Young;Joung, Soon-Hee
    • Journal of Families and Better Life
    • /
    • v.27 no.4
    • /
    • pp.141-160
    • /
    • 2009
  • Recently, some policies for reducing standby power, which has quite an effect on electricity consumption, have been employed all over the world. This study surveys the present condition of standby power for major electric home appliances during three years and analyzes the result of technical development reducing standby power. It presents how the industry paid attention to applying the technique of reducing standby power to electric appliances and how it affects the product's energy efficiency. We survey the standby power's change for six items, which were selected from the major electric appliances available on the market. It analyzes the difference of standby power consumption between appliances with a standby power reducing technique and those without during the latest three years. The amount of the average standby power is also compared. The comparison data confirms that the industry's effort and application of reducing standby power contribution has contributed to increasing an appliance's energy efficiency. This study restricted the analyzed items to six appliances, which has been a low volunteered involvement in the standby power reducing program. It is important for reducing standby power consumption of appliances because it contributes to saving electric energy at home and abroad. The development of the standby power reducing technique is needed for more appliances. Along with the development of the standby power reducing technique in the industrial field, it also necessary for consumers to enlarge their understanding of standby power reduction for economic, social, and environmental values.

Thermodynamic Optimization of a Organic Rankine Power Cycle (유기 랭킨 사이클 시스템의 열역학적 최적화)

  • Lee, W.Y.;Won, S.H.;Chung, H.S.
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.35-45
    • /
    • 1990
  • An analytical equation to estimate the Rankine power cycle efficiency at maximum power for the given mass flow rates of heating and cooling fluids is derived. The accuracy of the result is shown by comparing the analytical values with those calculated one using detailed thermodynamic data. The results indicate that the thermal efficiency at maximum power depends primarily on the initial temperatures of the heating and cooling fluids, and it also depends on the pinch-temperature differences between the working fluid and the heating and cooling fluids. The efficiency at maximum power provides a measure of the power available in a practical Rankine heat engine.

  • PDF