Low Power Trace Cache for Embedded Processor

Je-Gil Moon’, Ha-Young Jeong', Yong-Surk Lee™
* Dept. of Electrical and Electronic Engineering, Yonsei University, Seoul, 120-749, Korea
Tel : +82-31-209-2800 Fax : +82-31-209-4666 E-mail: {jgmoon,sixt06}@dubiki.yonsei.ac.kr
** Dept. of Electrical and Electronic Engineering, Yonsei University, Seoul, 120-749, Korea
Tel : +82-02-2123-2872 Fax : +82-02-312-4584 E-mail:yonglee@yonsei.ac.kr

Abstract:

Embedded business will be expanded market more and more since customers seek more wearable and ubiquitous
systems. Cellular telephones, PDAs, notebooks and portable multimedia devices could bring higher microprocessor
revenues and more rewarding improvements in performance and functions. Increasing battery capacity is still
creeping along the roadmap. Until a small practical fuel cell becomes available, microprocessor developers must
come up with power-reduction methods. According to MPR 2003, the instruction and data caches of ARM920T
processor consume 44% of total processor power. The rest of it is split into the power consumptions of the integer
core, memory management units, bus interface unit and other essential CPU circuitry. And the relationships among
CPU, peripherals and caches may change in the future. The processor working on higher operating frequency will
exact larger cache RAM and consume more energy.

In this paper, we propose advanced low power trace cache which caches traces of the dynamic instruction stream,
and reduces cache access times. And we evaluate the performance of the trace cache and estimate the power of the

trace cache, which is compared with conventional cache.

Keywords: Trace cache, Power Consumption, Embedded Cache, Instruction buffer

1. INTRODUCTION

With growing embedded businesses in the market,
CPUs are running faster and faster. This makes memory
reference a bottleneck in the overall computer
performance. Thus more and more caches are used to
ease the situations. The tendency of fast core and large
cache consumes lots of power, and thus embedded
microprocessor developers must come up with power-
reduction methods. According to MPR 2003, the
instruction and data caches of ARM920T processor
consume 44% of total processor power. The memory
access consume about half of the embedded
microprocessor system power, the estimate of power
distribution for the ARMO920T processor, in which
instruction and data caches consume 44% of total
power as showing in Fig.1.

The remaining 56% is split among the integer core,
memory management units, bus interface unit and
other essential CPU circuitry. Higher operating
frequencies will result in larger cache RAM and
consume more energy. According to Amdahls’s law, it
is effective to reduce the memory access power of
total processor power.

The instruction cache stores the static sequence of
instructions generated by the compiler. Within a cache,
there may be no relation between each basic block,
because taken branches can randomly change the
dynamic sequences of instructions in execution. Theses
activities of taken branches introduce power
consumption in the instruction cache. For instruction
caches that support single basic-block fetching, any
branch instructions within a fetched cache line will abort
the instructions following that branch whether it is taken
or not. As the size of a basic-block is normally around 5-
6 instructions for general integer applications, this

204

mechanism wastes not only the fetch bandwidth of the
instruction cache but also the power consumption in
fetching the whole cache line. The power consumption is
due to the increased accesses to the instruction cache [3].

In this paper, we first introduce the low power caches
with power-reduction methods in section 2. In section
3, we propose low power trace cache which replaces
instruction cache. We have calculated trace cache hit
rate, and our experimental result shows that the hit rate
of trace cache only is about 70-90%, so we propose
another low power trace cache, which includes
instruction buffers, and the hit rate of instruction can be
increased to about 99% with only 64 entry instruction
buffers. The experimental model and result are detailed
in section 4 and section 5. In section 6, we conclude
our work and discuss some future works.

Clocks
4%, B

O Cache

19%

SysCH_
3%
BiU
cp1s_ 8%
2%
PATag RAM _

1%

E 1 Cache
25%

iy DM
5

MU

%

4%

Fig.1. ARM920T power distribution shows dominant power
consumption attributed to cache RAM and ALU (MPR 2003)

2. PREVIOUS LOW POWER CACHE

The conventional set-associative cache is commonly
used in modern computer systems to reduce the conflict
misses. However, the implementation of it is not power-
efficient. A conventional n-way set-associative cache
selects all n-way tags and data memories in a set, but, at
most, it will only use one data block. The percentage of
wasted energy will increase as cache associativity
increases.

The phased lookup cache [7] first compares all the
tags with the accessing address, then selects only the
desired data way. The way prediction mechanism {8] is
another effective approach that speculatively selects a
way to access before making a normal cache access.
Compared with the conventional implementation, the
phased cache only selects one data sub-array instead of
n data sub-arrays, and the way prediction cache first
accesses the tag and data sub-arrays of the predicted
way. If the prediction is not correct, it then probes the
rest of tag and data sub-arrays simultaneously. If the
prediction accuracy is high, the way-prediction cache is
more energy-efficient than the phased cache [8].

The filter cache [9] is an extremely small cache of 32
to 64 words, which has very small access power
consumption. It is tightly integrated with a processor
and has very small access power compared to accessing
a standard first level cache or a standard on-chip or off-
chip program memory. But the frequent filter cache
misses reduce overall fetch performance of the
processor. Bellas et al. [10] used a profile-guided
compiler to map frequently executed loops to a special
address range, and discussed architecture extensions
that would only load items in that range into the filter
cache, thus reducing misses.

Unlike filter caches, a dynamically loaded loop
cache does not impose performance overhead because
of no suffering any misses from them. It involves no
tag comparisons, resulting in even less power per
access. However the dynamically loaded loop cache
cannot cache loops with control of flow changes
{COFs.). In some cases, it may increase more power
dissipation due to extensive trashing, caused by
particular loop with branches.

The hybrid loop cache designed by Ann Gordon-Ross
1s consisted of [.1 cache, a main loop cache and a second
levzl of preloaded storage. The main loop cache is loaded
either from L1 cache dynamically or from a second level
of preloaded storage on a COFs,, if the next instruction
talls within a preloaded region of code [10].

Instruction Cache

2naccess, | [BB2
BB1 l
3 acces BB3

PC

N I

Fig.2. Conventional Trace Cache

Trace Cache

BB1 |BB2 [BB3 |

The trace cache takes advantage of the fact that
programs execute the same instruction paths repeatedly.
The trace cache stores frequently executed non-
contiguous instruction blocks as straightened out ones
called traces [1]. For traditional instruction caches, ary
branch instruction within a fetched cache line will abort
the remaining instructions in the line, whether it is
taken or not. And the instruction will be fetched from
the cache line following branches. Because, on tte
other hand, trace cache has contiguous multiple blocks
in a trace, the portion of the cache line read on a taken
branch is removed as showing Fig.2. But some
configurations of conventional trace cache increase tte
power consumption in fetch unit. The main reasons for
this power increment are the concurrent access to both
trace cache and instruction cache. In conventional trace
cache mechanism, the trace cache and L1 instruction
cache are accessed simultaneously to reduce the miss
penalty from trace cache.

Different from conventional trace cache, the
sequential trace cache [4] has been investigated fcr
performance and power, which works with instructioa
cache in a sequential manner. The instruction cache is
accessed only after missing a previous trace cach:
lookup. Thus the sequential trace cache eliminates
unnecessary accesses to the instruction cache. Dynami:
prediction based trace cache maintains high
performance, but its ability to reduce power
consumption is limited. If the trace cache is accessed
only when the fetch unit is pretty much sure about its
hit, then the unnecessary miss penalty can be largel
removed.

Jie S.Hu [3] proposed selective trace cache, which ha:
the static prediction fetch unit thus resulting in high
performance as well as low power consumption. But all
of above trace caches are applicable to high-
performance superscalar processors, mnot to the
embedded processors.

In this paper, we first propose low power trace cache fo-
embedded processor, which accesses only trace cache.

3. LOW POWER TRACE CACHE FOR
EMBEDDED PROCESSOR

In conventional trace cache mechanism, the trace
cache and L1 instruction cache are accessec
simultaneously to reduce the miss penalty from trace
cache. Because of the concurrent access to both trace

202

cache and instruction cache, some configurations of
conventional trace cache increase the power
consumption in fetch unit. The sequential trace cache
eliminates unnecessary accesses to the instruction
cache, but has a long latency for misses in the trace
cache. All of them are not applicable to embedded
processor because they need so large memory blocks
and power for instruction cache and trace cache.

We have designed the fetch unit for embedded
processor using only low power trace cache, which can
replace one using trace cache and instruction cache
together. We evaluate it with the trace cache hit rate,
and the target minimum hit rate is 99%. The hit rate of
the conventional trace cache without instruction cache
is below 70%. For the target minimum hit rate we
implement partial tag matching, and branch folding, and
optimal trace length, and get about 90% hit rate with
256 entry trace cache. As showing Fig.3, the hit rate of
the trace cache is saturated at 256 entry trace lines. The
partial tag matching can improve about 20% of the hit

rate, and the optimal trace length is
Trace Cache Hit Rate
100 ,k s n " e 4
095
090 2 % < -
tx s - —e— bzip?
0.85 P e —— Lv — g Tf,u
.85 . crafty
0.0 Il 72 i) M ’
: /‘,e / - A gip
0.7s : S 7 /" -~ gte
2070 A B Lo A JI N
= it
E 0.65 / 7 / —#1ncf
z psp |—X ~—parser
0ss by A V4 - perlbmk
050 ; / »—twolf
0.45 J —4—vortex
D‘J;I 7 ZZ ~=vpr
‘ 7
i averag
0.8 '74-] average
0.30 . — E— A
032 t64 1128 1156 512 11024

Number of Entry

Fig. 3. Trace Cache Hit Rate

about 17~20 words. Partial tag matching is that when
an address is located between start address and end
address, the address is matching in that tag, and the hit
signal is generated. The hit rate of low power trace
cache can be increased through long basic blocks. The
long basic blocks are made through branch folding
about unconditional branches, which allow execution of
branches with one-cycle gain compared to a sequential
execution.

The miss penalty from the trace cache causes
performance degradation on the fetch unit. So we
propose low power trace cache, which includes 8-128
entry instruction buffers to reduce the miss penalty from
it. As showing in Fig.4, the proposed low power trace
cache fetch unit is consisted of instruction buffer,
embedded trace cache, line fill buffer, filling logic and
fast hit buffer.

The fast hit buffer is implemented because of large
ppwer dissipation in trace cache caused by the long
word line, which stores an entry trace least recently
used. As showing in Fig.5, the hit rate of the fast hit
buffer is about 86%, and we can save a lot of power
dissipation of trace cache.

206

For low power, the proposed trace cache is designed to
capture the locality of trace accessing and eliminate
unnecessary accesses to the instruction cache and
reduce the miss penalties.

The low power trace cache achieves almost the same
performance as a conventional cache, while the power
consumption of it is about 20% less. This improvement
comes from reducing conflict in trace cache and
eliminating so many accesses to large cache.

Oth12 @thh

100%
90%
80%
0%
£0% I
50% -
Vo Qe e & R
QG\«& §8E T €
¢ @ R
Q
Fig.5. Fast Hit Buffer Hit Rate
Instruction
L2 Cache teger Unit

Embedded
Trace cache

Filling Logic

Fast Hit buffer

Line Fill buffer

Fig.4. Low Power Trace Cache for Embedded processor

4, EXPERIMENTAL MODEL

The Wattch [12], a power evaluation tool to model the
trace cache is augmented for our simulator. The power
model of trace cache and fast hit buffer implemented is
similar to the one in Wattch for the instruction cache.
The power model of trace cache consists of two parts.
One is for the power model consumed for trace cache
lookup, and the other is for trace cache update, which
does in complete stage.

The fetch mechanism is optimized for low power. The
instruction lookup is matched in fast hit buffer at first,
and the miss from fast hit buffer enables the trace cache
and the instruction buffer.

The line-fill buffer is capable of holding up to 20
instructions. Instruction fetch queue size is 8. The
decoding bandwidth is 1, and issue unit have a
bandwidth of 2 instructions per cycle. The load/store
queue has a capacity of holding 8 load/store
instructions. The execution engine has 1 integer/FP
ALU and 1 integer/FP multipliers/dividers. The timing
parameters of memory hierarchy are shown in Table 1.

The integer benchmarks from SPEC2000 CINT are
used. All benchmarks except bzip2 and mcf are first
fast- forwarded 300 million instructions, then simulated

200 million instructions. No instruction 1is fast-
forwarded for bzip2 and mcf due to their specific
characteristics.

Table 1 Timing parameters in memory hierarchy.

r__ Memory Hierarch Timing Parameters

L1 Instruction buffer 1 cycle hit latency
L1 Dcache 1 cycle hit latency
Memory 32 cycles for first chunk,
o Icycles rest
TLB 30 cycles to service TLB miss

5. EXPERIMENTAL RESULT

As showing in Fig.6, the hit rate of the trace cache
with instruction buffer is saturated at 512 entries of
trace cache, and 128 entries of instruction buffer. The
hit rate of t256 and 1128 configuration is about 99%
except perlbmk, and gec, as showing in Fig.7. The hit
rate of our low power trace cache about perlbmk, and
gee is small relatively, because they have so many
subroutine calls, which cause the low power trace cache
miss. For embedded processor, the low power trace
cache can be effectively archives 99% hit rates with 256
entries of trace cache and 32 entries of instruction
buffer. And the performance degradation is below 4%,
as showing in Fig.8, except perlbmk, and gec.

-3 -6 —A-t128
~O-1256 -x—i512 e dl02d

%

o —

Hit Rate
e €
o
h
\

.
094 F-omn ‘_,:,.—_—;““;"4“{_//—_’
N
+_."__,...----"" / ‘l
093 *://::;o—f/”
0.92 : - — : l
i8 116) 64 i128

Instruction Buffer Size

Fig.6. The hit rate of low power trace cache

[Ot256i128 @512i128]

-
S
\\0

Fig.7. The hit rate of trace cache in SPEC2000

The design principle of low power trace cache is that
only traces that belong to the dominant set are allowed
to be stored in the trace cache, and others are stored in
small size instruction buffers. The instruction lookup is
matched in fast hit buffer at first, and the miss from ‘ast
hit buffer enables the trace cache and the instruction
buffer. The hit rate of one entry fast hit buffer is about
86%. From working in this way, the low power trace
cache eliminates not only the unnecessary accesses to
the instruction cache, but also reduces the majority of
lookups that result in misses to the trace cache.

L OIPT§oRG mIS3oK]

OO W R GI 0w O

Fig.7. Performance comparison

| OLPT$266 mI$32K |

0.45
0.4
0.3
0.3
0.25
0.2
0.15
0.1
0.05

bzip2
crafty
gap
gcc
gap
mct
parser
perlbmk
twolf
vortex
vpr

Fig.8. Power comparison

Thus the low power trace cache achieves almost the
same performance as a conventional cache, while tle
power consumption of low power trace cache is about
18% less

6. CONCLUSIONS

Power consumption in embedded processors s
becoming an important for battery-life and
performance. In this paper, we first explore the power
saving techniques in traditional instruction caches and
conventional trace caches. With analyzing the
distribution of individual trace and trace hits, we
propose low power cmbedded trace cache which
replace the instruction cache. But the hit rate of trace
cache only is about 70-90%, so we propose another low
power embedded trace cache including instruction
buffers. Our result shows that the hit rate of instruction

207

can be increased to about 99% and saved power about
18% with those buffers.

This paper shows that optimizing trace cache and
instruction buffer cache replaces the conventional
cache, and then reduces power consumption.

In view of the encouraging results of the low power
trace cache, we must compare other low power caches
with our work. And we believe that other high
performance trace cache techniques should be
investigated. We must consider selection techniques in
[3], study some more effective hit mechanism. For
applying to embedded processor, we must consider the
utilization of trace cache memory.

References

[1] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace cache:
A low latency approach to high bandwidth instruction
fetching”, MICRO-29, pp.24-34, 1996

[2] E. Rotenberg, S. Bennett, and J. Smith, “A trace cache
microarchitecture and evaluation,” [EEE Transactions
on Computers (Special issue on cache memory), vol. 48,
pp. 111-120, 1999.

[3] Jei S. Hu and N. Vijaykrishnan. “Selective Trace Cache:
A Low Power and High performance Fetch
Mechanism”, International Conference on Compilers,
Architecture and Synthesis for Embedded Systems
(CASES), 2002

[4] J. S. Hu, N. Vijaykrishnan, M. Kandemir, and M. J.
Irwin, “Power-efficient trace caches” in Proc. Of the 5th
Design Automation and Test in Europe Conference
(DATE'02), 2002.

208

[5] J. Faistl and T. Jaracz, “Trace cache: Effect on instruction
cache miss frequency.”
http://www.ece.cmu.edu/_ee742/proj
s98/faistl/index.html, 1998.

[6] N. P. Jouppi, “Improving Direct Mapped Cache
Performance by the Addition of a Small Associative
Cache and Prefetch Buffers", Proceedings of the 17th
Annual International Symposium. on Computer
Architecture, pp. 363-373, 1990

[71 A. Hasegawa et al., “SH3: High Code Density, Low-
Power”, [EEE Micro, vol.15, pp. 11-19, 1995.

[8] Zhichun Zhu, Xiaodong Zhang “Access-mode
predictions for low-power cache design” Micro, IEEE
vol. 22, pp. 58-71, 2002.

[91 J. Kin, M. Gupta, W. Mangione-Smith. "The Filter
Cache: An Energy Efficient Memory Structure.” Int.
Symposium on Microarchitecture, pp. 184-193, 1997.

[10] N. Bellas, I. Hajj, C. Polychronopoulos, G. Stamoulis.
“Energy and Performance Improvements in
Microprocessor Design Using a Loop Cache.” Int.
Conference on Computer Design, pp. 378-383, 1999.

[{1] Ann Gordon-Ross, Frank Vahid, “Dynamic Loop
Caching Meets Preloaded Loop Caching-A Hybrid
Approach”, Int.Conference on Computer Design, pp.
446-449, 2001

{12] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A
framework for architectural-level power analysis and
optimizations,” in Proc. of the 27th Annual Int.
Symposium on Computer Architecture, pp. 83-94, 2000.

[13] “SimpleScaler Introduction and Tutorial”™,
www.simplescalar.com/docs/users_guide v2.pdf

