• Title/Summary/Keyword: available power

Search Result 1,805, Processing Time 0.031 seconds

A Study on the Light Weighting of APU through Structural Analysis (구조해석을 통한 보조발전기 경량화에 관한 연구)

  • Kim, Hye-Eun;Kim, Jin-Hoon;Noh, Sang-Wan;Kim, Byeong-Ho;Baek, Hyun-Moo
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.895-910
    • /
    • 2019
  • Purpose: The purpose of this study is to lighten the APU (Auxiliary Power Unit) structure of the KAAV (Korea Assault Amphibious Vehicle) through structural analysis. Methods: Commercially-available program (MIDAS.NFX) was used for finite element analysis. Frequency response analysis was performed through linear static and mode analyses to verify the structural stability according to the change of the structural materials. Results: Numerical simulation (linear static, mode and frequency response analyses) results showed that the safety factor of the APU was over 1.5 even under the worst case conditions. The APU made by aluminum structures was expected to be available in the military field, since every requirements in the KDS (Korean Defense Specifications) was fulfilled during the various tests and evaluations. Conclusion: The structural analysis was verified that the structural stability of the APU structure of the KAAV after change of the structural material.

Theoretical Analysis of Wave Energy Converter

  • Oh, Jin-Seok;Komatsu, Toshimitsu;Kim, Yun-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.169-174
    • /
    • 2008
  • Floating devices, such as a cavity resonance device take advantage of both the water motion and the wave induced motions of the floating body itself. The wave energy converter is known commercially as the WAGB(Wave Activated Generator Buoy) and is used in some commercially available buoys to power navigation aids such as lights and horns. This wave energy converter consists of a circular floatation body which contains a vertical center pipe that has free communication with the sea. A theoretical analysis of this power generated by a pneumatic type wave energy converter is performed and the results obtained from the analysis are used for a real wave energy converter for buoy. This paper presents the analysis results and the design method for the WEC(Wave Energy Converter), and the associate results are application to the commercially available WEC for buoy. Maximum performance of WEC occurs at resonance with driving waves. The analysis of WEC is performed with LabVIEW program, and the design method of WEC for buoy is suggested in this paper.

A Study of Resistive Therapeutic Exercise Prescription (저항운동치료 처방에 관한 연구)

  • Bae Sung-Soo;Kim Tae-Sook;Kim On-Ju
    • The Journal of Korean Physical Therapy
    • /
    • v.11 no.1
    • /
    • pp.149-156
    • /
    • 1999
  • Resistive therapeutic exercise prescription goal is to improve functional performance and capabilities through the development of increased muscular strengh endurance or power. Resistance can be applied to either dynamic or static muscle contractions. Resistive therapeutic exorcise can be carried nut concentrically, eccentrically, isometrically, isokinetically. Neurodevelopmental treatment has not resistive therapeutic exercise concept. But proprioceptive neuromuscular facilitate techniques have resistive therapeutic exercise concept with pattens and techniques. It is aid muscle contraction, motor control and increase strength. Manual muscle testing will help the therapist establish a qualitative and quantitative baseline level of strength. Manual resistance maybe applied a against controlled lengthening contraction re static contraction of a muscle. A repetition maximum is not easy to calculate and is not the most accurate method available today to measure strength before of after a resistive therapeutic exercise program. Oddvar Holten Diagram is essy to calculate and is the most accurate method available today to measure strength before of after a resistive therapeutic exercise program. Plyometric training emphasize the development of muscular power and coordination. Quick bursts of force in functional movement patterns are often necessary of a patient is to return to high-demand occupational, recreational or sports related activities.

  • PDF

Numerical Simulation on the ULPU-V Experiments using RPI Model (RPI모형을 이용한 ULPU-V시험의 수치모사)

  • Suh, Jungsoo;Ha, Huiun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.147-152
    • /
    • 2017
  • The external reactor vessel cooling (ERVC) is well known strategy to mitigate a severe accident at which nuclear fuel inside the reactor vessel is molten. In order to compare the heat removal capacity of ERVC between the nuclear reactor designs quantitatively, numerical method is often used. However, the study for ERVC using computational fluid dynamics (CFD) is still quite scarce. As a validation study on the numerical prediction for ERVC using CFD, the subcooled boiling flow and natural circulation of coolant at the ULPU-V experiment was simulated. The commercially available CFD software ANSYS-CFX was used. Shear stress transport (SST) model and RPI model were used for turbulence closure and wall-boiling, respectively. The averaged flow velocities in the downcomer and the baffle entry under the reactor vessel lower plenum are in good agreement with the available experimental data and recent computational results. Steam generated from the heated wall condenses rapidly and coolant flows maintains single-phase flow until coolant boils again by flashing process due to the decrease of saturation temperature induced by higher elevation. Hence, the flow rate of coolant natural circulation does not vary significantly with the change of heat flux applied at the reactor vessel, which is also consistent with the previous literatures.

Optimal Operating Points on the Organic Rankine Cycle to Efficiently Regenerate Renewable Fluctuating Heat Sources (신재생에너지 가변열원의 효율적 이용을 위한 유기랭킨 사이클 최적작동점에 관한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • New & Renewable Energy
    • /
    • v.10 no.1
    • /
    • pp.6-19
    • /
    • 2014
  • Organic Rankine cycle (ORC) has been widely used to convert renewable energy such as solar energy, geothermal energy, or waste energy etc., to electric power. For a small scale output power less than 10 kW, turbo-expander is not widely used than positive displacement expander. However, the turbo-expander has merits that it can operate well at off-design points. Usually, the available thermal energy for a small scale ORC is not supplied continuously. So, the mass flowrate should be adjusted in the expander to maintain the cycle. In this study, nozzles was adopted as stator to control the mass flowrate, and radial-type turbine was used as expander. The turbine operated at partial admission. R245fa was adopted as working fluid, and supersonic nozzle was designed to get the supersonic flow at the nozzle exit. When the inlet operating condition of the working fluid was varied corresponding to the fluctuation of the available thermal energy, optimal operating condition was investigated at off-design due to the variation of mass flowrate.

Electrochemical Properties of Segmented-in-series SOFC Using Ni-Fe/YSZ Core-shell Anode (Ni-Fe/YSZ 코어-쉘 구조 연료극을 사용한 다전지식 고체산화물 연료전지의 전기화학적 특성)

  • An, Yong-Tae;Ji, Mi-Jung;Hwang, Hae-Jin;Lee, Min-Jin;Hong, Sun-Ki;Kang, Young-Jin;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.357-361
    • /
    • 2014
  • An Ni-Fe/YSZ core-shell structured anode for uniform microstructure and catalytic activity was synthesized. Flat tubular segmented-in-series solid oxide fuel cell-stacks were prepared by decalcomania method using synthesized anode powder. The Ni-Fe/YSZ core-shell anode exhibited better electrical conductivity than a commercially available Ni-YSZ cermet anode. Also power output increased by 1.3 times with a higher open circuit voltage. These results can be attributed to the uniformly distributed Ni particles in the YSZ framework. The impedance spectra of a Ni-Fe/YSZ core-shell anode showed comparable reduced ohmic resistance similar to those of the commercially available Ni-YSZ cermet anodes.

Basic study on Eco-industrial Park utilizing thermal effluents as heat source (온배수를 열원으로 활용하는 생태산업단지 조성에 관한 기초 연구)

  • KIM, Dong-Kyu;KANG, Dae-Seok;CHUNG, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.3
    • /
    • pp.400-408
    • /
    • 2009
  • The purpose of this study is to know the concept of Eco-industrial Park and How to use the thermal effluents from power plants. Thermal effluents, which use sea water for cooling, from power plants have been discharged with about $6{\sim}7^{\circ}C$ higher temperature than near sea area. Therefore, it could effect on the marine ecosystem as a external pressure factor that increase the artificial thermal load in near sea area. The applications of thermal effluents had been surveyed through the several internal and external cases for utilizing heat sources and reducing the thermal load. As the precedence research for applying, the amount of heat sources of thermal effluents was evaluated. When the thermal effluents was fully applied in heat sources and available heat, assume that use heating season by 12 hours a day of demanded available heat, it was possible to calculate total 198 Tcal of energy saving.

A Feasibility Study on Annual Energy Production of the Offshore Wind Farm using MERRA Reanalysis Data (해상풍력발전단지 연간발전량 예측을 위한 MERRA 재해석 데이터 적용 타당성 연구)

  • Song, Yuan;Kim, Hyungyu;Byeon, Junho;Paek, Insu;Yoo, Neungsoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.33-41
    • /
    • 2015
  • A feasibility study to estimate annual energy production of an offshore wind farm was performed using MERRA reanalysis data. Two well known commercial codes commonly used to wind farm design and power prediction were used. Three years of MERRA data were used to predict annual energy predictions of the offshore wind farm close to Copenhagen from 2011 to 2013. The availability of the wind farm was calculated from the power output data available online. It was found from the study that the MERRA reanalysis data with commercial codes could be used to fairly accurately predict the annual energy production from offshore wind farms when a meteorological mast is not available.

Dynamic ATC Computation for Real-Time Power Markets

  • Venkaiah, Ch.;Kumar, D.M. Vinod;Murali, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.209-219
    • /
    • 2010
  • In this paper, a novel dynamic available transfer capability (DATC) has been computed for real time applications using three different intelligent techniques viz. i) back propagation algorithm (BPA), ii) radial basis function (RBF), and iii) adaptive neuro fuzzy inference system (ANFIS) for the first time. The conventional method of DATC is tedious and time consuming. DATC is concerned with calculating the maximum increase in point to point transfer such that the transient response remains stable and viable. The ATC information is to be continuously updated in real time and made available to market participants through an internet based Open Access Same time Information System (OASIS). The independent system operator (ISO) evaluates the transaction in real time on the basis of DATC information. The dynamic contingency screening method [1] has been utilized and critical contingencies are selected for the computation of DATC using the energy function based potential energy boundary surface (PEBS) method. The PEBS based DATC has been utilized to generate patterns for the intelligent techniques. The three different intelligent methods are tested on New England 68-bus 16 machine and 39-bus 10 machine systems and results are compared with the conventional PEBS method.

Parameter Identification of 3R-C Equivalent Circuit Model Based on Full Life Cycle Database

  • Che, Yanbo;Jia, Jingjing;Yang, Yuexin;Wang, Shaohui;He, Wei
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1759-1768
    • /
    • 2018
  • The energy density, power density and ohm resistance of battery change significantly as results of battery aging, which lead to decrease in the accuracy of the equivalent model. A parameter identification method of the equivale6nt circuit model with 3 R-C branches based on the test database of battery life cycle is proposed in this paper. This database is built on the basis of experiments such as updating of available capacity, charging and discharging tests at different rates and relaxation characteristics tests. It can realize regular update and calibration of key parameters like SOH, so as to ensure the reliability of parameters identified. Taking SOH, SOC and T as independent variables, lookup table method is adopted to set initial value for the parameter matrix. Meanwhile, in order to ensure the validity of the model, the least square method based on variable forgetting factor is adopted for optimizing to complete the identification of equivalent model parameters. By comparing the simulation data with measured data for charging and discharging experiments of Li-ion battery, the effectiveness of the full life cycle database and the model are verified.