• Title/Summary/Keyword: auxin biosynthesis

Search Result 22, Processing Time 0.026 seconds

Inhibitors Targeting ABA Biosynthesis and Catabolism Can Be Used to Accurately Discriminate between Haploid and Diploid Maize Kernels during Germination

  • Kwak, Jun Soo;Kim, Sung-Il;Song, Jong Tae;Ryu, Si Wan;Seo, Hak Soo
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.204-212
    • /
    • 2017
  • There is a growing preference for using doubled haploids (DHs) in maize breeding programs because they reduce the time required to generate and evaluate new lines to 2 years or less. However, there is an urgent need for efficient techniques that accurately discriminate between haploid and diploid maize kernels. Here, we investigate the effects of several hormones and chemicals on the germination of haploid and diploid maize kernels, including auxin, cytokinin, ethylene, abscisic acid (ABA) biosynthesis inhibitor (fluridone), ABA catabolism inhibitor (diniconazole), methyl jasmonate (MeJA), and NaCl. Ethylene effectively stimulated the germination of both haploid and diploid maize kernels. The ABA biosynthesis inhibitor fluridone, the ABA catabolism inhibitor diniconazole, and MeJA selectively stimulated the germination of haploid maize kernels. By contrast, gibberellin, 1-naphthaleneacetic acid (NAA), kinetin, and NaCl inhibited the germination of both haploid and diploid maize kernels. These results indicate that the germination of haploid maize kernels is selectively stimulated by fluridone and diniconazole, and suggest that ABA-mediated germination of haploid maize kernels differs from that of diploid maize kernels and other plant seeds.

Effects of Methyl Jasmonate on Ethylene Producton in Tomato (Lycopersicon esculentum Mill.) Hypocotyl Segments and Fruits (Methyl jasmonate가 토마토(Lycopersicon esculentum Mill.)하배축 절편과 열매에서 에틸렌 생성에 미치는 영향)

  • June Seung Lee
    • Journal of Plant Biology
    • /
    • v.38 no.3
    • /
    • pp.235-242
    • /
    • 1995
  • Effects of methyl jasmonate (MeJA) on ethylene production in tomato(Lycopersicon esculentum Mill.) hypocotyl segments and fruits were studied. Ethylene production in tomato hypocotyl segments was inhibited by the increasing concentratons of MeJA, and 450 $\mu$M of MeJA showed 50% inhibitory effect. Time course data indicate that this inhibitory effect of MeJA appeared after 3 h of incubation period and continued until 24 h. Inhibition of ethylene producton by MeJA was due to the decrease in 1-aminocyclopropane-1-carboxylic acid(ACC) synthase activity. However, MeJA treatment had no effect on ACC oxidase activity and the accumulaton of ACC oxidase mRNAs. MeJA also inhibited auxin-induced ethylene production by decreasing in ACC synthase activity. In contrast, MeJA stimulated ethylene production in tomato fruits. When 30 $\mu$L/mL MeJA was treated in a gaseous state, ethylene production doubled and this stimulating effect continued until 4 days. To investigate the mechanisms of MeJA on ethylene production, ACC synthase and ACC oxidase activities were examined after MeJA treatment. MeJA increased the activities of both ACC synthase and ACC oxidase, and induced ACC oxidase mRNA accumulation. These data suggest that MeJA plays distinct roles in the ethylene production in different tomato tissues. It is possible that MeJA affects differently the mechanisms of signal transuction leading to the ethylene biosynthesis.

  • PDF

Regulation of hormone-related genes involved in adventitious root formation in sweetpotato

  • Nie, Hualin;Kim, Sujung;Lee, Yongjae;Park, Hyungjun;Lee, Jeongeun;Kim, Jiseong;Kim, Doyeon;Kim, Sunhyung
    • Journal of Plant Biotechnology
    • /
    • v.47 no.3
    • /
    • pp.194-202
    • /
    • 2020
  • The sweetpotatoes (Ipomoea batatas) generate adventitious roots (ARs) from cut stems that develop into storage roots and make for an important means of propagation. However, few studies have investigated the hormones involved in AR development in sweetpotato. In this study, the expression patterns of hormone-related genes involved in AR formation were identified using the transcriptome data. RNA-seq data from stems grown for 0 and 3 days after cutting were analyzed. In addition, hormone-related genes were identified among differentially expressed genes (DEGs) and filtered genes, and cluster analysis was used to characterize expression patterns by function. Most hormone-related regulated genes expressed 3 days after growing the cut stems were abscisic acid (ABA)-related genes, followed by ethylene- and auxin-related genes. For ABA, the biosynthesis genes (including genes annotated to NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3)) and signal transduction and perception genes (including genes annotated to PROTEIN PHOSPHATASE 2Cs (PP2Cs)) tended to decrease. Expression patterns of auxin- and ethylene-related genes differed by function. These results suggest that ABA, auxin, and ethylene genes are involved in AR formation and that they may be regulated in a hormone function-dependent manner. These results contribute to the identification of hormone functions during AR formation and may contribute to understanding the mechanism of AR formation in the sweetpotato.

Classification According to Site of Action of Paddy Herbicides Registered in Korea (국내 수도용 제초제의 작용기작별 분류)

  • Park, Jae-Eup;Kim, Sang-Su;Kim, Young-Lim;Kim, Min-Ju;Ha, Heun-Young;Lee, In-Yong;Moon, Byung-Chul;Ihm, Yang-Bin
    • Weed & Turfgrass Science
    • /
    • v.3 no.3
    • /
    • pp.165-173
    • /
    • 2014
  • This review study was conducted to recommend the effective use of herbicide mixtures in Korea. The herbicide ingredients by Herbicide Resistancce Action Committee (HRAC) was classified into 23 groupes according to the mode of action (acetyl CoA carboxylase inhibitors, acetolactate synthase, photosystem I and II inhibitors, protoporphyrinogen oxidase inhibitors, carotenoid biosynthesis inhibitors, enolpyruvyl shikimate-3-phosphate synthase inhibitors, glutamine synthetase inhibitors, dihydropteroate synthetase inhibitors, mitosis inhibitors, cellulose inhibitors, oxidative phosphorylation uncouplers, fatty acid and lipid biosynthesis inhibitors, synthetic auxins, auxin transport inhibitors and potential nucleic acid inhibitors or non-descript mode of action). The rice herbicide mixtures registered in Korea were classified based on the guideline of HRAC. Accordingly, such a classification system for resistance management can help to avoid continuous use of the herbicide having the same mode of action in the same field.

The Effect of Sodium Tungstate on the Aldehyde Oxidase and the Growth in the Primary Root of Maize (Zea mays) (옥수수 (Zea mays) 뿌리의 알데히드 산화효소와 생장에 미치는 텅스텐산 나트륨의 영향)

  • Oh, Young-Joo;Cho, Young-Jun;Park, Woong-June
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.990-995
    • /
    • 2007
  • We tested the effect of sodium tungstate, which disturbs the molybdenum cofactor formation, on the activities of aldehyde oxidase(AO) and the growth of maize(Zea mays) primary roots. As reported in other plants, sodium tungstate inhibited AO also in the maize root concentration-dependently. The inhibitory effect of sodium tungstate was observed only when the inhibitor was applied to the living plants. Application of tungstate to the extracted protein did not show any effect. Western analysis revealed slightly decreased level of AO protein in the presence of tungstate, indicating a positive feedback of gene regulation by the product. We also tested the effects of tungstate on the root growth. The elongation of primary root and the development of lateral roots, which are sensitive to the absolute level of auxin, were decreased in the presence of sodium tungstate. However, the gravitropic curvature of the primary root, which is dependent on the relative amount of auxin at both sides, was unaffected. These data suggested the decrease of auxin biosynthesis by the application of tungstate. However, the level of free IAA was unaffected by tungstate application. We discuss the possible explanations for the observed results.

Genomics and LC-MS Reveal Diverse Active Secondary Metabolites in Bacillus amyloliquefaciens WS-8

  • Liu, Hongwei;Wang, Yana;Yang, Qingxia;Zhao, Wenya;Cui, Liting;Wang, Buqing;Zhang, Liping;Cheng, Huicai;Song, Shuishan;Zhang, Liping
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.417-426
    • /
    • 2020
  • Bacillus amyloliquefaciens is an important plant disease-preventing and growth-promoting microorganism. B. amyloliquefaciens WS-8 can stimulate plant growth and has strong antifungal properties. In this study, we sequenced the complete genome of B. amyloliquefaciens WS-8 by Pacific Biosciences RSII (PacBio) Single Molecule Real-Time (SMRT) sequencing. The genome consists of one chromosome (3,929,787 bp) and no additional plasmids. The main bacteriostatic substances were determined by genome, transcriptome, and mass spectrometry data. We thereby laid a theoretical foundation for the utilization of the strain. By genomic analysis, we identified 19 putative biosynthetic gene clusters for secondary metabolites, most of which are potentially involved in the biosynthesis of numerous bioactive metabolites, including difficidin, fengycin, and surfactin. Furthermore, a potential class II lanthipeptide biosynthetic gene cluster and genes that are involved in auxin biosynthesis were found. Through the analysis of transcriptome data, we found that the key bacteriostatic genes, as predicted in the genome, exhibited different levels of mRNA expression. Through metabolite isolation, purification, and exposure experiments, we found that a variety of metabolites of WS-8 exert an inhibitory effect on the necrotrophic fungus Botrytis cinerea, which causes gray mold; by mass spectrometry, we found that the main substances are mainly iturins and fengycins. Therefore, this strain has the potential to be utilized as an antifungal agent in agriculture.

The Effect of Oligosaccharides on Ethylene Production in Mung Bean (Vigna radiata W.) Hypocotyl Segments

  • Choy, Yoon-Hi;Lee, Dong-Hee;Lee, June-Seung
    • Journal of Plant Biology
    • /
    • v.39 no.4
    • /
    • pp.295-300
    • /
    • 1996
  • The physiological effects of oligogalacturonic acid (OGA:D. P. 6-7), a product of acid hydrolysis of polygalacturonic acid (PGA), on ethylene biosynthesis in mung bean (Vigna radiata W.) hypocotyl segments was studied. Among PGA, OGA and monogalacturomic acid (MGA), only OGA stimulated ethylene production in mung bean hypocotyl segments, and the most effective concentraton of OGA was 50$\mu\textrm{g}$/mL. Time course data indicated that this stimulatiion effect of OGA appeared after 90 min incubation period and continued until 24 h. When indol-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) were treated with OGA to investigate the mechanism of OGA on ethylene production, they did not show synergistic effects on ethylene production. The stimulation of ethylene production by OGA was due to the increase of in vivo ACC synthase activity, but OGA treatment had no effect of in vivo ACC oxidase activity. The effect of aminoethoxy vinyl glycine (AVG) and Co2+, the inhibitor of ethylene synthesis, was siminished a little by the OGA, but the treatment of Ca2+, known to increase ACC, with OGA did not increase the ethylene production, this effect seems to be specific for Ca2+ because other divalent cation, Mg2+, did not show the inhibition of OGA-indyuced ethylene production. It is possible that the OGA adopts a different signal transduction pathway to the ethylene bioxynthesis.

  • PDF

Responses of Tobacco Photomixotrophic Cultured Cells to Various Herbicides (다양한 제초제에 대한 담배 Photomixotrophic 배양세포의 반응)

  • 권혜경;권석윤;이행순;윤의수;김진석;조광연;곽상수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.3
    • /
    • pp.183-187
    • /
    • 1999
  • To establish an efficient screening system for new herbicides using plant cultured cells, responses of tobacco photomixotrophic cultured (PH) cells to various herbicides with different modes of action were surveyed by measuring the cell growth and ion conductivity in medium. The cells were cultured in Murashige and Skoog (MS) medium containing 0.7mg/L 2,4-D, 0.3mg/L kinetin and 30 g/L sucrose at $25^{\circ}C$ in the light (100 rpm). Chemicals were treated to suspension cultures of tobacco PH cells at the time of subculture. The cell growth and ion conductivity in the medium were investigated on 12 days after chemical treatment. The ion conductivity assay gave well correlated results to the cell growth inhibition data. The responses of tobacco PM cells were dependent on the modes of action of chemicals tested. Atrazine, an inhibitor of photosynthetic electron transport (PET), strongly inhibited both the cell membrane and cell growth ($IC_{50}$/, about 1 $\mu$M). Butachlor (an inhibitor of cell division), glufosinate (an inhibitor of amino acid biosynthesis), and fluridone (an inhibitor of carotenoid biosynthesis) showed a dose-dependent inhibition. However, Quinclorac, a herbicide with an auxin activity, did not affect the cell growth and ion leakage. These results suggested that tobacco PM cells is suitable materials for the simple screening of new herbicides such as PET, amino acid biosynthesis, ceil division inhibitors by measuring the cell growth and ion conductivity.

  • PDF

Effects of Some Plant Growth Regulators on Protein Biosynthesis of Carrot Cells (당근 세포의 단백질 생합성에 대한 몇가지 식물생장조절제의 영향)

  • Yoo, Ki-Jung;Park, Chang-Kyu;Song, Tae-Chul
    • Applied Biological Chemistry
    • /
    • v.28 no.3
    • /
    • pp.187-195
    • /
    • 1985
  • Electrophoretic studies of protein extracts from carrot calluses suspension-cultured on the media containing kinetin, BA, IAA, NAA or $GA_3$ at the levels of $10^{-6},\;10^{-5},\;10^{-4}M$, respectively, were performed to identify polypeptides and proteins regulated by auxin, cytokinin or GA. Fifteen bands of polypeptide(s) were observed in the callus cultured in the control medium devoid of growth regulators, and their molecular weights were $18._4,\;20._2,\;20._0,\;34._9,\;35._7,\;37._4,\;40._3,\;42._2,\;44._1,\;44._4,\;49._3,\;55._0,\;56._6,\;58._1,\;and\;59._9\;KD$, respectively. The synthesis of polypeptide appeared to be promoted in two bands by kinetin, in six bands by BA, in one band by IAA, in two bands by NAA, and in four bands by $GA_3$, while inhibited in five bands by kinetin, in three bands by BA, in four bands by IAA, in three bands by NAA and in three bands by $GA_3$. The polypeptides of $40._3\;KD\;42._2\;KD$ seemed to be regulated by cytokinins, and those of $44._1\;KD,37._4\;KD,\;and\;56._6\;KD$ by auxins. The proteins of three bands with relative mobilities of 0.56, 0.84, and 0.92, respectively, increased in the calluses cultured on the media containing kinetin, IAA, $GA_3$, NAA or BA, compared to the control, but it was difficult to identify the proteins specific for each growth regulator.

  • PDF

Overexpression of ginseng patatin-related phospholipase pPLAIIIβ alters the polarity of cell growth and decreases lignin content in Arabidopsis

  • Jang, Jin Hoon;Lee, Ok Ran
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.321-331
    • /
    • 2020
  • Background: The patatin-related phospholipase AIII family (pPLAIIIs) genes alter cell elongation and cell wall composition in Arabidopsis and rice plant, suggesting diverse commercial purposes of the economically important medicinal ginseng plant. Herein, we show the functional characterization of a ginseng pPLAIII gene for the first time and discuss its potential applications. Methods: pPLAIIIs were identified from ginseng expressed sequence tag clones and further confirmed by search against ginseng database and polymerase chain reaction. A clone showing the highest homology with pPLAIIIβ was shown to be overexpressed in Arabidopsis using Agrobacterium. Quantitative polymerase chain reaction was performed to analyze ginseng pPLAIIIβ expression. Phenotypes were observed using a low-vacuum scanning electron microscope. Lignin was stained using phloroglucinol and quantified using acetyl bromide. Results: The PgpPLAIIIβ transcripts were observed in all organs of 2-year-old ginseng. Overexpression of ginseng pPLAIIIβ (PgpPLAIIIβ-OE) in Arabidopsis resulted in small and stunted plants. It shortened the trichomes and decreased trichome number, indicating defects in cell polarity. Furthermore, OE lines exhibited enlarged seeds with less number per silique. The YUCCA9 gene was downregulated in the OE lines, which is reported to be associated with lignification. Accordingly, lignin was stained less in the OE lines, and the expression of two transcription factors related to lignin biosynthesis was also decreased significantly. Conclusion: Overexpression of pPLAIIIβ retarded cell elongation in all the tested organs except seeds, which were longer and thicker than those of the controls. Shorter root length is related to auxinresponsive genes, and its stunted phenotype showed decreased lignin content.