• 제목/요약/키워드: auxiliary switching circuit

검색결과 243건 처리시간 0.024초

1차측 보조회로를 이용한 Three-Level 컨버터에 관한 연구 (A Study on the Three-Level Converter using Primary Auxiliary Circuit)

  • 배진용;김용;조규만
    • 전기학회논문지
    • /
    • 제57권6호
    • /
    • pp.972-981
    • /
    • 2008
  • A New ZVS(Zero Voltage Switching) and ZVZCS(Zero Voltage and Zero Current Switching) Three-Level Converter is proposed. The proposed converter presented in this paper used a phase shift control with a flying capacitor in the primary side to achieve ZVS for the all switch. A primary auxiliary circuit, which consists of one coupled inductor, is added in the primary to provide ZVZCS conditions to primary switches. Many advantages including simple circuit topology high efficiency, and low cost make this converter attractive for high power applications. The principle of operation, feature and design considerations are illustrated and verified through the experiment with a 2kW(27V, 74A) 40 kHz IGBT based experimental circuit.

영전압 스위칭 3-레벨 보조 공진 폴 인버터 (Zero-voltage-switching three level auxiliary resonant commutated pole inverter)

  • 유동욱;원충연;조정구;백주원
    • 대한전기학회논문지
    • /
    • 제45권4호
    • /
    • pp.535-542
    • /
    • 1996
  • A zero voltage switching (ZVS) three level auxiliary resonant commutated pole inverter (ARCPI) is presented for high power GTO inverters. The concept of ARCP for two level inverter is extended to the three inverter. The proposed auxiliary commutation circuit consists of one resonant inductor and two bi-directional switches, which provides ZVS condition to the main devices without increasing device voltage or current stresses. The auxiliary device operates with zero current switching (ZCS) which enables use of the low cost thyristors. The proposed ARCPI can handle higher voltage and higher power (1-10MVA) comparing to the two level one. Operation and analysis of the ARCPI are illustrated and the features are compared o those of the snubber circuit incorporated three level inverter. Experimental results with 10kW, 4kHz prototype are presented to verify the principle of operation. (author). refs., figs., tab.

  • PDF

A New Zero Voltage Transition Bridgeless PFC with Reduced Conduction Losses

  • Mahdavi, Mohammad;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • 제9권5호
    • /
    • pp.708-717
    • /
    • 2009
  • In this paper a new zero voltage transition PWM bridgeless PFC is introduced. The auxiliary circuit provides soft switching condition for all semiconductor devices. Also, in the resonant path of the auxiliary circuit, only two semiconductor devices exist. Therefore the resonant conduction losses are low. Furthermore, the auxiliary circuit semiconductor elements consist of only one diode and one switch. The proposed auxiliary circuit is applied to a bridgeless PFC converter to further reduce conduction and switching losses. In this paper, the operating modes of this converter are explained and the resulting ideal and simulation waveforms are shown. The presented experimental results justify the theoretical analysis.

Soft-Switching PWM Boost Chopper-Fed DC-DC Power Converter with Load Side Auxiliary Passive Resonant Snubber

  • Nakamura, Mantaro;Ogura, Koki;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제4권3호
    • /
    • pp.161-168
    • /
    • 2004
  • This paper presents a new circuit topology of high-frequency soft switching commutation boost type PWM chopper-fed DC-DC power converter with a loadside auxiliary passive resonant snubber. In the proposed boost type chopper-fed DC-DC power converter circuit operating under a principle of ZCS turn-on and ZVS turn-off commutation, the capacitor and inductor in the auxiliary passive resonant circuit works as the lossless resonant snubber. In addition to this, the voltage and current peak stresses of the power semiconductor devices as well as their di/dt or dv/dt dynamic stress can be effectively reduced by the single passive resonant snubber treated here. Moreover, it is proved that chopper-fed DC-DC power converter circuit topology with an auxiliary passive resonant snubber could solve some problems on the conventional boost type hard switching PWM chopper-fed DC-DC power converter. The simulation results of this converter are illustrated and discussed as compared with the experimental ones. The feasible effectiveness of this soft witching DC-DC power converter with a single passive resonant snubber is verified by the 5kW, 20kHz experimental breadboard set up to be built and tested for new energy utilization such as solar photovoltaic generators and fuel sell generators.

보조회로를 이용한 영전압 스위칭 플라이백 컨버터 (ZVS Flyback Converter Using a Auxiliary Circuit)

  • 김태웅;강창수
    • 대한전자공학회논문지TE
    • /
    • 제37권5호
    • /
    • pp.11-116
    • /
    • 2000
  • 본 논문에서는 영전압 스위칭에 의해 스위칭 손실과 전압 스트레스로 줄이는 토폴로지를 제안하였다. 일반적으로 스위칭 모드 변환시에는 과도한 전압과 전류가 기생 성분에 의해서 발생하는데 이것은 전압 스트레스와 전력 손실을 발생시켜 전원 장치의 성능에 영향을 미치어 전체 효율이 감소한다. 실제로 플라이백 컨버터에서 스위치의 천이 첨두 전압과 전류는 기생성분에 의해서 발생한다. 이러한 문제를 보완하기 위하여 보조회로를 이용한 영전압 스위칭 플라이백 컨버터를 제안한다. 기존의 플라이백 토폴로지에 보조 회로를 추가하여 전력 손실을 감소시키고 스위칭 전압 스트레스를 최소로 하였다. 보조 회로 내에 스너버 캐패시터는 주 스위치의 온·오프시 제어 전압 변화시간에 의해 영전압 스위칭을 가능하게 하여 전압 스트레스 및 전력 손실을 감소시킨다. 본 논문에서는 회로의 세부적인 분석을 하고 동작과정을 설명하였고 500W, 100㎑ 대의 보조회로를 사용한 영전압 스위칭 플라이백 컨버터를 설계하여 기존의 하드 스위칭 플라이백 컨버터와의 효율을 비교하였다.

  • PDF

새로운 액티브 보조 공진 DC 링크 스너버를 이용한 3상 전압형 소프트 스위칭 인버터의 특성 (Characteristic of Three-Phase Voltage Type Soft-Switching Inverter using the Novel Active Auxiliary Resonant DC Link Snubber)

  • 성치호;허영환;문상필;박한석
    • 전기학회논문지P
    • /
    • 제65권2호
    • /
    • pp.114-121
    • /
    • 2016
  • This paper is Instant space vector PWM(Pulse Width Modulation)power conversion devices in switching power semiconductors from my generation to losses and switching when the voltage surge and current surge of electronic noise(EMI: Electro Magnetic Interference / RFI: Radio Frequency Interference)to effectively minimize the power soft-switching power conversion circuit topologies of auxiliary resonant DC tank for the purpose of high performance realization of the electric power conversion system by the high-speed switching of a semiconductor device(AQRDCT simultaneously : an active auxiliary resonance using auxiliary Quasi-resonant DC tank)DC link snubber switch has adopted a three-phase voltage inverter. AQRDCL proposed in this paper can reduce the effective and current peak stress of the power semiconductors of the auxiliary resonant snubber circuit compared to the conventional active-resonant DC link snubber, it is not necessary to install the clamp switch of the auxiliary resonant DC link, DC the peak current and power loss of the bus line can be reduced.

스위칭 손실 없는 보조회로를 이용한 고효율 부우스트 컨버터 설계 (A New Soft-switched PWM Boost Converter with a Lossless Auxiliary Circuit)

  • 최현칠
    • 전력전자학회논문지
    • /
    • 제11권2호
    • /
    • pp.149-158
    • /
    • 2006
  • 본 논문에서는 기존에 널리 사용되는 펄스폭 변조 (Pulse width modulation : PWM) 방식의 컨버터와 공진형 컨버터의 장점을 활용하고 단점을 보완할 수 있는 새로운 형태의 영전류 천이형 (Zero current transition : ZCT) 부우스트 컨버터를 제안한다. 제안한 회로는 기존의 PWM 부우스트 컨버터에 보조회로를 추가하여 주 스위치와 출력 다이오드의 스위칭 천이 순간에만 소프트 스위칭 조건을 제공함으로써 전체적인 동작은 기존의 부우스트 컨버터와 크게 차이가 없도록 하였다. 아울러, 보조회로에서의 부가적인 손실 역시 존재하지 않으므로 해서 고효율이 가능하게 된다. 본 논문에서는 제안한 회로의 동작을 분석하고 이를 바탕으로, 보조 회로의 소자값 결정에 도움이 되는 설계방식을 제공한다. 또한, 실험을 통하여 제안한 회로의 동작 원리 및 유용성을 검증하였다.

A Flyback Transformer linked Soft Switching PWM DC-DC Power Converter using Trapped Energy Recovery Passive Quasi-Resonant Snubbers with an Auxiliary Three-Winding Transformer

  • Ahmed Tarek;Chandhaket Srawouth;Nakaoka Mutsuo;Jung Song Hwa;Lee Hyun-Woo
    • Journal of Power Electronics
    • /
    • 제4권4호
    • /
    • pp.237-245
    • /
    • 2004
  • In this paper, a two-switch high frequency flyback transformer linked zero voltage soft switching PWM DC-DC power converter implemented for distributed DC- feeding power conditioning supplies is proposed and discussed. This switch mode power converter circuit is mainly based on two main active power semiconductor switches and a main flyback high frequency transformer linked DC-DC converter in which, two passive lossless quasi-resonant snubbers with pulse current regeneration loops for energy recovery to the DC supply voltages composed of a three winding auxiliary high frequency pulse transformer, auxiliary capacitors and auxiliary diodes for inductive energy recovery discharge blocking due to snubber capacitors are introduced to achieve zero voltage soft switching from light to full load conditions. It is clarified that the passive resonant snubber-assisted soft switching PWM DC-DC power converter has some advantages such as simple circuit configuration, low cost, simple control scheme, high efficiency and lowered noises due to the soft switching commutation. Its operating principle is also described using each mode equivalent circuit. To determine the optimum resonant snubber circuit parameters, some practical design considerations are discussed and evaluated in this paper. Moreover, through experimentation the practical effectiveness of the proposed soft switching PWM DC-DC power converter using IGBTs is evaluated and compared with a hard switching PWM DC-DC power converter.

Two-Switch Auxiliary Resonant DC Link Snubber-Assisted Three-Phase Soft Switching PWM Sinewave Power Conversion System with Minimized Commutation Power Losses

  • Nagai, Shinichiro;Sato, Shinji;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제3권4호
    • /
    • pp.249-258
    • /
    • 2003
  • This paper presents a high-efficient and cost effective three-phase AC/DC-DC/AC power conversion system with a single two-switch type active Auxiliary Resonant DC Link (ARDCL) snubber circuit, which can minimize the total power dissipation. The active ARDCL snubber circuit is proposed in this paper and its unique features are described. Its operation principle in steady-state is discussed for the three phase AC/DC-DC/AC converter, which is composed of PWM rectifier as power factor correction (PFC) converter, sinewave PWM inverter. In the presented power converter system not only three-phase AC/DC PWM rectifier but also three-phase DC/AC inverter can achieve the stable ZVS commutation for all the power semiconductor devices. It is proved that the proposed three-phase AC/DC-DC/AC converter system is more effective and acceptable than the previous from the cost viewpoint and high efficient consideration. In addition, the proposed two-switch type active auxiliary ARDCL snubber circuit can reduce the peak value of the resonant inductor injection current in order to maximize total system actual efficiency by using the improved DSP based control scheme. Moreover the proposed active auxiliary two-switch ARDCL snubber circuit has the merit so that there is no need to use any sensing devices to detect the voltage and current in the ARDCL sunbber circuit for realizing soft-switching operation. This three-phase AC/DC-DC/AC converter system developed for UPS can achieve the 1.8% higher efficiency and 20dB lower conduction noise than those of the conventional three-phase hard-switching PWM AC/DC-DC/AC converter system. It is proved that actual efficiency of the proposed three-phase AC/DC-DC/AC converter system operating under a condition of soft switching is 88.7% under 10kw output power.

소프트 스위칭 방식의 보조 회로를 갖는 영전압 스위칭 부스트 컨버터 (ZVS Boost Converter with Soft Switching Auxiliary Circuit)

  • 송인범;박건욱;정두용;김동성;정용채;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.487-488
    • /
    • 2010
  • This paper proposes a soft switching boost converter with an auxiliary circuit. This circuit helps a main switch operate as a soft switching. The main switch operates ZVS turn-on and ZVS turn-off. And the auxiliary switch operates ZCS turn-on and ZVS turn-off. In this paper, operation modes are analyzed and soft switching operation is verified through simulations.

  • PDF