• Title/Summary/Keyword: auxiliary circuit

Search Result 402, Processing Time 0.026 seconds

Speed Control of Capacitor Run Single-Phase Induction Motor Using Voltage Control of the Auxiliary Winding (보조권선 전압제어의 의한 커패시터 런 단상 유도전동기의 속도제어)

  • Ryu, Joon-Hyoung;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.3-5
    • /
    • 1998
  • This paper presents a speed control method for the capacitor run single-phase induction motor. The equivalent circuit of a capacitor motor is analyzed using the forward and the backward components, and simple circuit equations are obtained. Simulations for the speed control are performed by adjusting the voltage magnitude of the auxiliary winding.

  • PDF

Zero-Voltage and Zero-Current-Switching (ZVZCS) Full Bridge PWM Converter with Zero Current Ripple

  • Baek, J.-W.;Cho, J.G.;Jeong, C.Y.;Yoo, D.W.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.79-84
    • /
    • 1998
  • A novel zero voltage and zero current switching (ZVZCS) full bridge (FB) PWM converter with low output current ripple is presented. A simple auxiliary circuit added in the secondary provides ZVZCS conditions to primary switches, ZVS for leading-leg switches and ZCS for lagging-leg switches, as well as reduces the output current ripple (ideally zero ripple). The auxiliary circuit includes neither lossy components nor additional active switches which are demerits of the previously presented ZVZCS converters. Many advantages including simple circuit topology, high efficiency, low cost and low current ripple make the new converter attractive for high performance high power (>1kW) applications. The principle of operation, features and design considerations are illustrated and verified on a 2.5kW, 100KHz IGBT based experimental circuit.

  • PDF

A Study on the Zero-Voltage and Zero-Current-Switching Three Level DC/DC Converter using Secondary Coupled Inductor (2차측 결합 인덕터를 이용한 ZVZCS Three Level DC/DC 컨버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Baek, Soo-Hyun;Kim, Pill-Soo;Lee, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.200-204
    • /
    • 2001
  • A ZVZCS(Zero Voltage and Zero Current Switching) Three Level DC/DC Converter is presented to secondary auxiliary circuit. The new converter presented in this paper used a phase shift control with a flying capacitor in the primary side to achieve ZVS for the outer switch. A secondary auxiliary circuit, which consists of one small capacitor two small diode and one coupled inductor is added in the secondary to provides ZVZCS conditions to primary switches, ZVS for outer switches and ZCS for inner switches. Many advantages including simple circuit topology high efficiency, and low cost make the new converter attractive for high power applications. The principle of operation, feature and design considerations are illustrated and verified through the experiment with a 1kW 50kHz IGBT based experimental circuit.

  • PDF

Design and Anaysis of Soft Switching Boost Converter with H-auxiliary resonant circuit (H-보조 공진 회로를 갖는 소프트 스위칭 부스트 컨버터의 설계 및 해석)

  • Cha, Gil-Ro;Park, So-Ri;Park, Sang-Hoon;Won, Chung-Yuen;Jung, Yong-Chae;Lee, Su-Won
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.118-120
    • /
    • 2008
  • In this paper, a soft switching boost converter with H-auxiliary resonant circuit is proposed. Using some resonant components, the circuit can be achieved the soft switching capability. Each of the switches in the proposed circuit perform ZVS at turn off and ZCS at turn on. Thus, the high efficiency characteristic can also be obtained, and then the size of the total system can be reduced. The operational principle of the soft switching boost converter in theoretically analyzed. Simulation results validate the analysis and experimental results demonstrate soft switching boost converter benefits.

  • PDF

The Development of APU(Auxiliary Power Supply Unit) for DC 3000V (DC 3000V용 보조전원장치 개발)

  • Kim, Jin-Yong;Kimg, Youn-Chung;Han, Jung-Soo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1654-1660
    • /
    • 2011
  • The korea Electric Railway feeder voltage is DC 1500V and AC 250000V. The auxiliary power supply of the vehicle auxiliary power units for domestic electrical feed has been developed with domestic technology hyeonchae mounted station, and domestic uses, such as voltage, have been exported to other countries. However, do not use at domestic that can be used for DC 3000V voltage auxiliary power unit does not develop, vehicle exports global. This has already been replaced by imported products from other nations is a real situation. Thus, our auxiliary power unit for the DC 3000V was developed, it will be exported to Ukraine. In this paper, We introduced circuit and structure of developed auxiliary power supply unit, and verified the performance with output characteristic of the auxiliary power unit.

  • PDF

A Study on ZVT Boost Converter Using a ZCS Auxiliary Circuit (ZCS 보조회로를 이용한 ZVT Boost 컨버터에 관한 연구)

  • Ryu D.K.;Lee W.S.;Choi T.Y.;Seo M.S.;Won C,Y.;Kim Y.R.
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.129-132
    • /
    • 2001
  • Recently, a ZVT boost converter is embedded in a power factor correction system. The control circuit of the converter assures soft-switching for all the MOSFETs and load regulation. The PFC system contains additional control circuits which assure the input voltage in a sinusoidal form and feed-forward line voltage regulation. In this paper, a soft switching boost converter with zero-voltage transition(ZVT) main switch using zero-current switching(ZCS) auxiliary switch is proposed. Operating intervals of the converter are persented and analyzed. The proposed results show that the main switch maintains UT while auxiliary switch retains ZCS for the complete specified line and load conditions.

  • PDF

Novel ZVZCS PWM DC-DC Converters with One Auxiliary Switch (단일 보조 스위치를 이용한 새로운 ZVZCS PWM DC-DC 컨버터)

  • 유승희;이동윤;유상봉;현동석
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.28-32
    • /
    • 1998
  • This paper presents novel ZVZCS PWM DC-DC converters. The proposed soft-switching technique achieves ZVS and ZCS simultaneously at both turn-on and turn-off of the main switch and diode by using only one auxiliary switch. Also, the proposed soft-switching technique is suitable for not only minority but also majority carrier semiconductor devices. The auxiliary circuit of the proposed topology is placed out the main power path and therefore, there are no voltage/current stresses on the main switch and diode. The operating principle of the proposed circuit is illustrated by a detailed study with the boost converter as an example. The validity of the proposed converter is verified by theoretical analysis, simulation and experiment results.

  • PDF

A Study on the Modeling and Design of Single Phase Induction Generators

  • Kim Cherl-Jin;Lee Kwan-Yong
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.331-336
    • /
    • 2005
  • With increasing emphasis on non-conventional energy systems and autonomous power generation, development of improved and appropriate generating systems has recently taken on greater significance. This paper describes the performance analysis of a single phase self-excited induction generator (SEIG), suitable for autonomous/standby power systems. The system is also appropriate for wind energy systems and small portable systems. Both windings of the induction machine, the main and the auxiliary, are utilized. One winding will be devoted to the supply excitation current only, by being connected to the excitation capacitor, while the load is connected across the other winding. As the design of excitation, the minimum of self-excited capacitor connected auxiliary winding is determined as the suitable value using a circuit equation of auxiliary winding. For the steady state analysis, the equivalent circuit of the single-phase induction generators is used as a basis for modeling using the double-revolving field theory. The validity of the designed generator system is confirmed by experimental and computed results.

Soft Switching Inverter with An Auxiliary Active Quasi-Resonant DC Link Snubber for AC Servo Motor Drive

  • Mun, Sang-Pil;Kim, Chil-Ryong;Lee, Jong-Kurl;Park, Man-Kyu;Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.3
    • /
    • pp.79-87
    • /
    • 2008
  • This paper presents a simple circuit topology of the auxiliary active quasi-resonant DC link snubber-assisted three phase voltage source soft-switching inverter for small scale PM motor drive applications. The pulse processing drive circuit interface and its soft-switching operation are discussed from an experimental point of view. Moreover, its conductive noise is measured and evaluated for electrical AC servo motor drive as compared with that of the conventional hard switching inverter.

Improved ZVT(Zero Voltage Transition) Boost Converter (개선된 ZVT 부스트 컨버터)

  • Lee Il-Oun;Lee Dong-Young;Cho Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.673-676
    • /
    • 2001
  • In this paper, the improved zero-voltage transition(ZVT) PWM boost converter using an inductor feedback technique is proposed. The improved circuit uses a low-voltage zener diode to reduce the turn-off witching loss of the auxiliary witch and EMI noise. Using this technique, soft-witching for the auxiliary switch is guaranted at wide line and load ranges and some of the energy circulating in the auxiliary circuit is fed to the load Since the active switches are turned on and off softly, the witching losses and EMI noise are reduced significantly and the higher efficiency of the system is achieved. In this paper, the modes of converter operation are explained and analyzed, design guidelines are given, and experimental results of 1kW, 100kHz prototype system are presented.

  • PDF