• Title/Summary/Keyword: autophagy receptor

Search Result 50, Processing Time 0.024 seconds

N-retinylidene-N-retinylethanolamine degradation in human retinal pigment epithelial cells via memantine- and ifenprodil-mediated autophagy

  • Jae Rim Lee;Kwang Won Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.5
    • /
    • pp.449-456
    • /
    • 2023
  • N-methyl-D-aspartate (NMDA) receptors are ionic glutamine receptors involved in brain development and functions such as learning and memory formation. NMDA receptor inhibition is associated with autophagy activation. In this study, we investigated whether the NMDA receptor antagonists, memantine and ifenprodil, induce autophagy in human retinal pigment epithelial cells (ARPE-19) to remove N-retinylidene-N-retinylethanolamine (A2E), an intracellular lipofuscin component. Fluorometric analysis using labeled A2E (A2E-BDP) and confocal microscopic examination revealed that low concentrations of NMDA receptor antagonists, which did not induce cytotoxicity, significantly reduced A2E accumulation in ARPE-19 cells. In addition, memantine and ifenprodil activated autophagy in ARPE-19 cells as measured by microtubule-associated protein 1A/1B-light chain3-II formation and phosphorylated p62 protein levels. Further, to understand the correlation between memantine- and ifenprodil-mediated A2E degradation and autophagy, autophagy-related 5 (ATG5) was depleted using RNA interference. Memantine and ifenprodil failed to degrade A2E in ARPE-19 cells lacking ATG5. Taken together, our study indicates that the NMDA receptor antagonists, memantine and ifenprodil, can remove A2E accumulated in cells via autophagy activation in ARPE-19 cells.

Structure biology of selective autophagy receptors

  • Kim, Byeong-Won;Kwon, Do Hoon;Song, Hyun Kyu
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.73-80
    • /
    • 2016
  • Autophagy is a process tightly regulated by various autophagy-related proteins. It is generally classified into non-selective and selective autophagy. Whereas non-selective autophagy is triggered when the cell is under starvation, selective autophagy is involved in eliminating dysfunctional organelles, misfolded and/or ubiquitylated proteins, and intracellular pathogens. These components are recognized by autophagy receptors and delivered to phagophores. Several selective autophagy receptors have been identified and characterized. They usually have some common domains, such as motif, a specific cargo interacting (ubiquitin-dependent or ubiquitin-independent) domain. Recently, structural data of these autophagy receptors has been described, which provides an insight of their function in the selective autophagic process. In this review, we summarize the most up-to-date findings about the structure-function of autophagy receptors that regulates selective autophagy.

Particulate Matter-Induced Aryl Hydrocarbon Receptor Regulates Autophagy in Keratinocytes

  • Jang, Hye sung;Lee, Ji eun;Myung, Cheol hwan;Park, Jong il;Jo, Chan song;Hwang, Jae Sung
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.570-576
    • /
    • 2019
  • Particulate matter (PM), which refers to the mixture of particles present in the air, can have harmful effects. Damage to cells by PM, including disruption of organelles and proteins, can trigger autophagy, and the relationship between autophagy and PM has been well studied. However, the cellular regulators of PM-induced autophagy have not been well characterized, especially in keratinocytes. The Aryl Hydrocarbon Receptor (AhR) is expressed in the epidermis and is activated by PM. In this study, we investigated the role of the AhR in PM-induced autophagy in HaCaT cells. Our results showed that PM led to AhR activation in keratinocytes. Activation of the AhR-target gene CYP1A1 by PM was reduced by co-treatment with ${\alpha}$-naphthoflavone (${\alpha}-NF$), an AhR inhibitor. We also evaluated activation of the autophagy pathway in PM-treated keratinocytes. In HaCaT cells, treatment with PM treatment led to the induction of microtubules-associated proteins light chain 3 (LC3) and p62/SQSTM1, which are essential components of the autophagy pathway. To study the role of the AhR in mediating PM-induced autophagy, we treated cells with ${\alpha}-NF$ or used an siRNA against AhR. Expression of LC3-II induced by PM was decreased in a dose dependent manner by ${\alpha}-NF$. Furthermore, knockdown of AhR with siAhR diminished PM-induced expression of LC3-II and p62. Together, these results suggest that inhibition of the AhR decreases PM-induced autophagy. We confirmed these results using the autophagy-inhibitors BAF and 3-MA. Taken together, our results indicate that exposure to PM induces autophagy via the AhR in HaCaT keratinocytes.

Repopulation of autophagy-deficient stromal cells with autophagy-intact cells after repeated breeding in uterine mesenchyme-specific Atg7 knockout mice

  • Ji-Eun Oh;Sojung Kwon;Hyunji Byun;Haengseok Song;Hyunjung Jade Lim
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.3
    • /
    • pp.170-176
    • /
    • 2023
  • Objective: Autophagy is highly active in ovariectomized mice experiencing hormone deprivation, especially in the uterine mesenchyme. Autophagy is responsible for the turnover of vasoactive factors in the uterus, which was demonstrated in anti-Müllerian hormone receptor type 2 receptor (Amhr2)-Cre-driven autophagy-related gene 7 (Atg7) knockout (Amhr-Cre/Atg7f/f mice). In that study, we uncovered a striking difference in the amount of sequestosome 1 (SQSTM1) accumulation between virgin mice and breeder mice with the same genotype. Herein, we aimed to determine whether repeated breeding changed the composition of mesenchymal cell populations in the uterine stroma. Methods: All female mice used in this study were of the same genotype. Atg7 was deleted by Amhr2 promoter-driven Cre recombinase in the uterine stroma and myometrium, except for a triangular stromal region on the mesometrial side. Amhr-Cre/Atg7f/f female mice were divided into two groups: virgin mice with no mating history and aged between 11 and 12 months, and breeder mice with at least 6-month breeding cycles with multiple pregnancies and aged around 12 months. The uteri were used for Western blotting and immunofluorescence staining. Results: SQSTM1 accumulation, representing Atg7 deletion and halted autophagy, was much higher in virgin mice than in breeders. Breeders showed reduced accumulation of several vasoconstrictive factors, which are potential autophagy targets, in the uterus, suggesting that the uterine stroma was repopulated with autophagy-intact cells during repeated pregnancies. Conclusion: Multiple pregnancies seem to have improved the uterine environment by replacing autophagy-deficient cells with autophagy-intact cells, providing evidence of cell mixing.

Lipopolysaccharide (LPS)-Induced Autophagy Is Responsible for Enhanced Osteoclastogenesis

  • Sul, Ok-Joo;Park, Hyun-Jung;Son, Ho-Jung;Choi, Hye-Seon
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.880-887
    • /
    • 2017
  • We hypothesized that inflammation affects number and activity of osteoclasts (OCs) via enhancing autophagy. Lipopolysaccharide (LPS) induced autophagy, osteoclastogenesis, and cytoplasmic reactive oxygen species (ROS) in bone marrow-derived macrophages that were pre-stimulated with receptor activator of nuclear $factor-{\kappa}B$ ligand. An autophagy inhibitor, 3-methyladenine (3-MA) decreased LPS-induced OC formation and bone resorption, indicating that autophagy is responsible for increasing number and activity of OCs upon LPS stimulus. Knockdown of autophagy-related protein 7 attenuated the effect of LPS on OC-specific genes, supporting a role of LPS as an autophagy inducer in OC. Removal of ROS decreased LPS-induced OC formation as well as autophagy. However, 3-MA did not affect LPS-induced ROS levels, suggesting that ROS act upstream of phosphatidylinositol-4,5-bisphosphate 3-kinase in LPS-induced autophagy. Our results suggest the possible use of autophagy inhibitors targeting OCs to reduce inflammatory bone loss.

A Structural View of Xenophagy, a Battle between Host and Microbes

  • Kwon, Do Hoon;Song, Hyun Kyu
    • Molecules and Cells
    • /
    • v.41 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • The cytoplasm in mammalian cells is a battlefield between the host and invading microbes. Both the living organisms have evolved unique strategies for their survival. The host utilizes a specialized autophagy system, xenophagy, for the clearance of invading pathogens, whereas bacteria secrete proteins to defend and escape from the host xenophagy. Several molecules have been identified and their structural investigation has enabled the comprehension of these mechanisms at the molecular level. In this review, we focus on one example of host autophagy and the other of bacterial defense: the autophagy receptor, NDP52, in conjunction with the sugar receptor, galectin-8, plays a critical role in targeting the autophagy machinery against Salmonella; and the cysteine protease, RavZ secreted by Legionella pneumophila cleaves the LC3-PE on the phagophore membrane. The structure-function relationships of these two examples and the directions of future research will be discussed.

Transient Receptor Potential Cation Channel V1 (TRPV1) Is Degraded by Starvation- and Glucocorticoid-Mediated Autophagy

  • Ahn, Seyoung;Park, Jungyun;An, Inkyung;Jung, Sung Jun;Hwang, Jungwook
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.257-263
    • /
    • 2014
  • A mammalian cell renovates itself by autophagy, a process through which cellular components are recycled to produce energy and maintain homeostasis. Recently, the abundance of gap junction proteins was shown to be regulated by autophagy during starvation conditions, suggesting that transmembrane proteins are also regulated by autophagy. Transient receptor potential vanilloid type 1 (TRPV1), an ion channel localized to the plasma membrane and endoplasmic reticulum (ER), is a sensory transducer that is activated by a wide variety of exogenous and endogenous physical and chemical stimuli. Intriguingly, the abundance of cellular TRPV1 can change dynamically under pathological conditions. However, the mechanisms by which the protein levels of TRPV1 are regulated have not yet been explored. Therefore, we investigated the mechanisms of TRPV1 recycling using HeLa cells constitutively expressing TRPV1. Endogenous TRPV1 was degraded in starvation conditions; this degradation was blocked by chloroquine (CLQ), 3MA, or downregulation of Atg7. Interestingly, a glucocorticoid (cortisol) was capable of inducing autophagy in HeLa cells. Cortisol increased cellular conversion of LC3-I to LC-3II, leading autophagy and resulting in TRPV1 degradation, which was similarly inhibited by treatment with CLQ, 3MA, or downregulation of Atg7. Furthermore, cortisol treatment induced the colocalization of GFP-LC3 with endogenous TRPV1. Cumulatively, these observations provide evidence that degradation of TRPV1 is mediated by autophagy, and that this pathway can be enhanced by cortisol.

The FMRFamide Neuropeptide FLP-20 Acts as a Systemic Signal for Starvation Responses in Caenorhabditis elegans

  • Kang, Chanhee;Avery, Leon
    • Molecules and Cells
    • /
    • v.44 no.7
    • /
    • pp.529-537
    • /
    • 2021
  • Most animals face frequent periods of starvation throughout their entire life and thus need to appropriately adjust their behavior and metabolism during starvation for their survival. Such adaptive responses are regulated by a complex set of systemic signals, including hormones and neuropeptides. While much progress has been made in identifying pathways that regulate nutrient-excessive states, it is still incompletely understood how animals systemically signal their nutrient-deficient states. Here, we showed that the FMRFamide neuropeptide FLP-20 modulates a systemic starvation response in Caenorhabditis elegans. We found that mutation of flp-20 rescued the starvation hypersensitivity of the G protein β-subunit gpb-2 mutants by suppressing excessive autophagy. FLP-20 acted in AIB neurons, where the metabotropic glutamate receptor MGL-2 also functions to modulate a systemic starvation response. Furthermore, FLP-20 modulated starvation-induced fat degradation in a manner dependent on the receptor-type guanylate cyclase GCY-28. Collectively, our results reveal a circuit that senses and signals nutrient-deficient states to modulate a systemic starvation response in multicellular organisms.

Effect of fermented sarco oyster extract on age induced sarcopenia muscle repair by modulating regulatory T cells

  • Kyung-A Byun;Seyeon Oh;Sosorburam Batsukh;Kyoung-Min Rheu;Bae-Jin Lee;Kuk Hui Son;Kyunghee Byun
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.6
    • /
    • pp.406-422
    • /
    • 2023
  • Sarcopenia is an age-related, progressive skeletal muscle disorder involving the loss of muscle mass and strength. Previous studies have shown that γ-aminobutyric acid (GABA) from fermented oysters aids in regulatory T cells (Tregs) cell expansion and function by enhancing autophagy, and concomitantly mediate muscle regeneration by modulating muscle inflammation and satellite cell function. The fermentation process of oysters not only increases the GABA content but also enhances the content of branched amino acids and free amino acids that aid the level of protein absorption and muscle strength, mass, and repair. In this study, the effect of GABA-enriched fermented sarco oyster extract (FSO) on reduced muscle mass and functions via Treg modulation and enhanced autophagy in aged mice was investigated. Results showed that FSO enhanced the expression of autophagy markers (autophagy-related gene 5 [ATG5] and GABA receptor-associated protein [GABARAP]), forkhead box protein 3 (FoxP3) expression, and levels of anti-inflammatory cytokines (interleukin [IL]-10 and transforming growth factor [TGF]-β) secreted by Tregs while reducing pro-inflammatory cytokine levels (IL-17A and interferon [IFN]-γ). Furthermore, FSO increased the expression of IL-33 and its receptor IL-1 receptor-like 1 (ST2); well-known signaling pathways that increase amphiregulin (Areg) secretion and expression of myogenesis markers (myogenic factor 5, myoblast determination protein 1, and myogenin). Muscle mass and function were also enhanced via FSO. Overall, the current study suggests that FSO increased autophagy, which enhanced Treg accumulation and function, decreased muscle inflammation, and increased satellite cell function for muscle regeneration and therefore could decrease the loss of muscle mass and function with aging.

Luteolin sensitizes human liver cancer cells to TRAIL-induced apoptosis via autophagy and JNK-mediated death receptor 5 upregulation

  • UDDIN MD. NAZIM;SANG‑YOUEL PARK
    • International Journal of Oncology
    • /
    • v.54 no.2
    • /
    • pp.665-672
    • /
    • 2019
  • The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a dynamic cytokine that initiates the apoptosis of cancer cells, but exhibits little or no toxicity in normal cells. Luteolin is a flavonoid compound frequently used in the treatment of cancer. In the current study, we demonstrate that treatment with luteolin and TRAIL exerts a synergistic effect and the mechanisms on TRAIL-resistant Huh7 cells. The results demonstrated that luteolin induced an autophagic flux in human liver cancer cells. The attenuation of the autophagic flux by applying the specific inhibitor of autophagy, chloroquine, significantly suppressed DR5 expression. Treatment with genetically modified autophagy-related 5 siRNA abrogated the luteolin-mediated sensitizing effect of TRAIL. Furthermore, pre-treatment with the c-Jun N-terminal kinase (JNK) inhibitor, SP600125, significantly attenuated the luteolin-induced upregulation of DR5 expression, thereby suggesting that JNK activation promotes DR5 expression. Our findings also revealed that Akt phosphorylation was required for TRAIL sensitization. On the whole, the findings of this study indicated that luteolin effectively enhanced TRAIL-initiated apoptosis, and that these effects were likely to be mediated by autophagy and JNK-mediated DR5 expression.