• Title/Summary/Keyword: autonomous navigation system

Search Result 492, Processing Time 0.027 seconds

Vision Navigation System by Autonomous Mobile Robot

  • Shin S.Y.;Lee, J.H.;Kang H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.146.3-146
    • /
    • 2001
  • It has been integrated into several navigation systems. This paper shows that system recognizes difficult indoor roads and open area without any specific mark such as painted guide tine or tape. In this method, Robot navigates with visual sensors, which uses visual information to navigate itself along the road. An Artificial Neural Network System was used to decide where to move. It is designed with USB web camera as visual sensor.

  • PDF

A Study on Deployment of Inland Reference Stations for Optimizing Marine and Inland User Performance Using Precise PNT (해양 및 내륙 정밀 PNT 사용자 성능 최적화를 위한 내륙 기준국 배치 연구)

  • Yebin Lee;Byungwoon Park
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.396-409
    • /
    • 2023
  • In the field of autonomous vehicles, where high accuracy and reliability are critical, various satellite navigation augmentation systems have been developed to improve system performance. These systems generate correction and integrity information based on measurements and navigation data collected from ground reference stations, enhancing user positioning accuracy. Thus, the performance of the system heavily relies on the deployment and spacing of reference stations. To construct an effective satellite navigation augmentation system, careful consideration must be given to the installation points of reference stations. This paper presents a user positioning performance modeling formula and proposes a method for selecting the installation points of new reference stations. The proposed method involves selecting a candidate group area that can optimize the user's positioning performance. By utilizing this method, the system's performance can be improved, ensuring high accuracy and reliability for autonomous vehicle applications.

Evaluation Environment based on V2X Communication for Commercial Vehicle Cooperative Autonomous Driving (상용차 자율협력주행 플랫폼 평가를 위한 V2X 기반 평가환경 개발)

  • Han-gyun Jung;Seong-keun Jin;Jae-min Kwak
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.450-455
    • /
    • 2021
  • In this paper, we introduce the contents of research on the establishment of an evaluation environment for autonomous cooperative driving platform for commercial vehicles based on V2X communication. For the evaluation of the autonomous cooperative driving platform based on V2X communication, various standards, standards, and guidelines for test evaluation should be developed and provided to the test subject, along with the establishment of test beds such as roads and V2X infrastructure that can apply various driving scenarios. do. In addition, based on this, various reference equipment and test equipment for actual test and evaluation should be developed. In this paper, various technologies, standards, equipment, and construction infrastructure developed to construct the evaluation environment for autonomous cooperative driving platform for commercial vehicles based on V2X communication are introduced.

Reduced Error Model for Integrated Navigation of Unmanned Autonomous Underwater Vehicle (무인자율수중운동체의 보정항법을 위한 축소된 오차 모델)

  • Park, Yong-Gonjong;Kang, Chulwoo;Lee, Dal Ho;Park, Chan Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.584-591
    • /
    • 2014
  • This paper presents a novel aided navigation method for AUV (Autonomous Underwater Vehicles). The navigation system for AUV includes several sensors such as IMU (Inertial Measurement Unit), DVL (Doppler Velocity Log) and depth sensor. In general, the $13^{th}$ order INS error model, which includes depth error, velocity error, attitude error, and the accelerometer and gyroscope biases as state variables is used with measurements from DVL and depth sensors. However, the model may degrade the estimation performance of the heading state. Therefore, the $11^{th}$ INS error model is proposed. Its validity is verified by using a degree of observability and analyzing steady state error. The performance of the proposed model is shown by the computer simulation. The results show that the performance of the reduced $11^{th}$ order error model is better than that of the conventional $13^{th}$ order error model.

Real time GPS position data correction using the vanishing point and a monocular vision system for autonomous land navigation (무한원점과 단일 비젼 시스템을 이용한 자율주행을 위한 실시간 GPS 위치 데이터 보정)

  • 정준익;노도환
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.187-193
    • /
    • 2004
  • In this paper, we proposed the GPS position data correction method for autonomous land navigation using vanishing point property and a monocular vision system. Simulations are carried out over driving distances of approximately 60 km on the basis of realistic road data. On a straight road, the proposed method reduces GPS position error by at least 63% within 0.5 m. However, the average accuracy of the method is not presented, because it is difficult to estimate it on other than a straight road in variable conditions.

Implementation of Environment Obstacle Simulator for Autonomous Navigation System using Intelligence Techniques (지능형 자율운항시스템을 위한 주변객체시뮬레이터 구현)

  • 이원호;김창민;김용기
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.89-92
    • /
    • 2002
  • 최근 들어 급증하고 있는 해양 충돌 사고 증가의 원인은 선박을 조종하는 항해사의 잘못된 판단 에 의한 부주의가 대부분이다. 이러한 문제를 해결하기 위한 가장 적극적인 방법은 선박에 자동화 및 지능화를 부여하여 항해사의 실수를 최소화하는 것이다. 대표적인 연구는 선박의 자율운항시스템(autonomous navigation system)이 있는데, 이는 선박운항에 있어 항해계획을 수립하고 현재의 선박의 상태를 파악하여 선박을 적절히 제어하는 항해 전문가시스템이다. 선박 자율운항시스템은 실세계의 선박에 장착되어 실험하여야하나, 선박은 고가의 운송수단이고, 자율운항시스템을 장착하기 위한 하부장치 인터페이스를 설계 및 구현에 많은 시간이 소요되므로 실제 선박을 모방하는 선박시뮬레이터를 이용하는 방법이 타당하다. 선박시뮬레이터는 선박의 물리적 운항특성을 모방하는 선박운동시뮬레이터와 선박 운항 주변에 변화하는 장애물을 시뮬레이터 하는 주변 객체시뮬레이터로 구성된다. 본 연구에서는 선박 운항 주변에 등장하는 장애물 변화를 시뮬레이션하고, 이에 기반한 ARPA RADAR를 모의 가동하는 주변객체시뮬레이터를 개발한다.

Development of Autonomous Mobile Robot with Speech Teaching Command Recognition System Based on Hidden Markov Model (HMM을 기반으로 한 자율이동로봇의 음성명령 인식시스템의 개발)

  • Cho, Hyeon-Soo;Park, Min-Gyu;Lee, Hyun-Jeong;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.726-734
    • /
    • 2007
  • Generally, a mobile robot is moved by original input programs. However, it is very hard for a non-expert to change the program generating the moving path of a mobile robot, because he doesn't know almost the teaching command and operating method for driving the robot. Therefore, the teaching method with speech command for a handicapped person without hands or a non-expert without an expert knowledge to generate the path is required gradually. In this study, for easily teaching the moving path of the autonomous mobile robot, the autonomous mobile robot with the function of speech recognition is developed. The use of human voice as the teaching method provides more convenient user-interface for mobile robot. To implement the teaching function, the designed robot system is composed of three separated control modules, which are speech preprocessing module, DC servo motor control module, and main control module. In this study, we design and implement a speaker dependent isolated word recognition system for creating moving path of an autonomous mobile robot in the unknown environment. The system uses word-level Hidden Markov Models(HMM) for designated command vocabularies to control a mobile robot, and it has postprocessing by neural network according to the condition based on confidence score. As the spectral analysis method, we use a filter-bank analysis model to extract of features of the voice. The proposed word recognition system is tested using 33 Korean words for control of the mobile robot navigation, and we also evaluate the performance of navigation of a mobile robot using only voice command.

Development of P-SURO II Hybrid Autonomous Underwater Vehicle and its Experimental Studies (P-SURO II 하이브리드 자율무인잠수정 기술 개발 및 현장 검증)

  • Li, Ji-Hong;Lee, Mun-Jik;Park, Sang-Heon;Kim, Jung-Tae;Kim, Jong-Geol;Suh, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.813-821
    • /
    • 2013
  • In this paper, we present the development of P-SURO II hybrid AUV (Autonomous Underwater Vehicle) which can be operated in both of AUV and ROV (Remotely Operated Vehicle) modes. In its AUV mode, the vehicle is supposed to carry out some of underwater missions which are difficult to be achieved in ROV mode due to the tether cable. To accomplish its missions such as inspection and maintenance of complex underwater structures in AUV mode, the vehicle is required to have high level of autonomy including environmental recognition, obstacle avoidance, autonomous navigation, and so on. In addition to its systematic development issues, some of algorithmic issues are also discussed in this paper. Various experimental studies are also presented to demonstrate these developed autonomy algorithms.

Development of Autonomous Navigation System Using Simulation Based on Unity-ROS (Unity-ROS 시뮬레이터 기반의 자율운항 시스템 개발 및 검증)

  • Kiwon Kim;Hyuntae Bang;Jeonghwa Seo;Wonkeun Youn
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.406-415
    • /
    • 2023
  • In this study, we focused on developing and verifying ship collision avoidance algorithms using Unity simulator and ROS(Robot Operating System). ROS is used to establish an environment where communication between different operating systems is possible, and a dynamic model of a ship is constructed within Unity simulator. The Lidar data collected in Unity environment is passed to the system based on python through ROS. In the system based on python, control command values were created through the logic of the collision avoidance algorithm using data, and the values were transferred back to Unity to control the movement of the virtual ship. Through the developed simulation system, the reliability of the collision avoidance algorithm of ships with two different forms in an environment similar to the actual physical world was confirmed. As a result, it was confirmed on the simulator that it could be avoided without collision even in an environment with various types of obstacles, and that the avoidance characteristics according to the dynamics of the ship could be analyzed.

Underwater Hybrid Navigation Algorithm Based on an Inertial Sensor and a Doppler Velocity Log Using an Indirect Feedback Kalman Filter (간접 되먹임 필터를 이용한 관성센서 및 초음파 속도센서 기반의 수중 복합항법 알고리듬)

  • 이종무;이판묵;성우제
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.83-90
    • /
    • 2003
  • This paper presents an underwater hybrid navigation system for a semi-autonomous underwater vehicle (SAUV). The navigation system consists of an inertial measurement unit (IMU), and a Doppler velocity log (DVL), accompanied by a magnetic compass. The errors of inertial measurement units increase with time, due to the bias errors of gyros and accelerometers. A navigational system model is derived, to include the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 20. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors, and correct the state equation when the measurements are available. Simulation was performed with the 6-d.o,f equations of motion of SAUV, using a lawn-mowing survey mode. The hybrid underwater navigation system shows good tracking performance, by updating the error covariance and correcting the system's states with the measurement errors from a DVL, a magnetic compass, and a depth sensor. The error of the estimated position still slowly drifts in the horizontal plane, about 3.5m for 500 seconds, which could be eliminated with the help of additional USBL information.